• 제목/요약/키워드: Damage-signaling pathway

검색결과 120건 처리시간 0.027초

항산화효소의 암 예방 효과 및 발암 억제 기전 (The Chemopreventive Effects of Antioxidant Enzyme)

  • 정화진;조윤주;원장원;서영록
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권2호
    • /
    • pp.45-47
    • /
    • 2006
  • The reactive oxygen species (ROS) caused the damage of macro molecules, many degenerative disease and cancer, which was produced in process of the aerotropic metabolic pathway as well as in response to the various genotoxic stresses. Recently, redox systems including the number of antioxidant proteins such as catalase, glutathione peroxidase, heam-containing peroxidase, peroxiredoxin and superoxide dismutase (SOD) has been reported to have chemopreventive effects. Antioxidant proteins has been known to have the activity directly removing ROS and affecting the protein-protein interaction and cell signaling to induce the cellular responses. We need to understand the mechanism of antioxidants prevent DNA damage from oxidative stresses for researching the cancer prevention and providing the development of cancer therapeutic drug.

  • PDF

어유의 Docosahexaenoic Acid (DHA)가 인체혈관 내피세포(ECV304 Cells)에서의 Apoptosis에 미치는 영향 (Effect of Docosahexaenoic Acid (DHA) on the Apoptosis of Human Endothelial ECV304 Cells)

  • 김영연;김효숙;김매하;장수정;이명숙
    • Journal of Nutrition and Health
    • /
    • 제39권4호
    • /
    • pp.357-365
    • /
    • 2006
  • DHA, one of w-3 fatty acids, modulates cell growth or death though the changes of apoptotic signaling in human endothelial ECV304 cells. We investigated the effects of DHA on the changes of apoptotic signaling in human vascular endothelial ECV304 cells using lipid peroxidation (LPO) metabolites. LPO could be originated by dietary polyunsaturated fatty acids such as linoleic acid(LA), arachidonic acid(AA) and docosahexaenoic acid (DHA). DHA caused cell death of ECV304 cells compared to LA, AA or control as evidenced by changes in cell morphology and MTT assay. LPO levels was significantly elevated by 10 fold in DHA-treated ECV 304 cells and caspase-3 activity was increased by DHA corresponding to increasing incubation times compared to control. One of reasons of the cell death in DHA-treated ECV304 cells could be expected that caspase activity, marker for mitochondrial damages, might be triggered by the increasing LPO levels. Our results strongly indicated that DHA induced LPO production has an important role on apoptotic signaling pathway in ECV304 cells. LPO production in endothelial cells which was metabolized by oxidation of dietary PUFA, might be one of risk factors in the initial progression of atherosclerosis.

Galangin Activates the ERK/AKT-Driven Nrf2 Signaling Pathway to Increase the Level of Reduced Glutathione in Human Keratinocytes

  • Hewage, Susara Ruwan Kumara Madduma;Piao, Mei Jing;Kang, Kyoung Ah;Ryu, Yea Seong;Fernando, Pattage Madushan Dilhara Jayatissa;Oh, Min Chang;Park, Jeong Eon;Shilnikova, Kristina;Moon, Yu Jin;Shin, Dae O;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.427-433
    • /
    • 2017
  • Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

Anti-hyperglycemic effects and signaling mechanism of Perilla frutescens sprout extract

  • Kim, Da-Hye;Kim, Sang Jun;Yu, Kang-Yeol;Jeong, Seung-Il;Kim, Seon-Young
    • Nutrition Research and Practice
    • /
    • 제12권1호
    • /
    • pp.20-28
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Perilla frutescens (L.) Britton var. (PF) sprout is a plant of the labiate family. We have previously reported the protective effects of PF sprout extract on cytokine-induced ${\beta}-cell$ damage. However, the mechanism of action of the PF sprout extract in type 2 diabetes (T2DM) has not been investigated. The present study was designed to study the effects of PF sprout extract and signaling mechanisms in the T2DM mice model using C57BL/KsJ-db/db (db/db) mice. MATERIALS/METHODS: Male db/db mice were orally administered PF sprout extract (100, 300, and 1,000 mg/kg of body weight) or rosiglitazone (RGZ, positive drug, 1 mg/kg of body weight) for 4 weeks. Signaling mechanisms were analyzed using liver tissues and HepG2 cells. RESULTS: The PF sprout extract (300 and 1,000 mg/kg) significantly reduced the fasting blood glucose, serum insulin, triglyceride and total cholesterol levels in db/db mice. PF sprout extract also significantly improved glucose intolerance and insulin sensitivity, decreased hepatic gluconeogenic protein expression, and ameliorated histological alterations of the pancreas and liver. Levels of phosphorylated AMP-activated protein kinase (AMPK) protein expression also increased in the liver after treatment with the extract. In addition, an increase in the phosphorylation of AMPK and decrease in the phosphoenolpyruvate carboxykinase and glucose 6-phosphatase proteins in HepG2 cells were also observed. CONCLUSIONS: Our results sugges that PF sprout displays beneficial effects in the prevention and treatment of type 2 diabetes via modulation of the AMPK pathway and inhibition of gluconeogenesis in the liver.

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

The effect of Saururus chinensis Baill against oxidative damage and inflammation

  • Hwang, Dong Ryeol;Jeong, Jin Boo;Eo, Hyun Ji;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Kim, Bo Ram;Koo, Jin Suk
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.1-6
    • /
    • 2012
  • Objectives : ROS are involved in a wide spectrum of diseases including chronic inflammation and cancer. S.chinensis Baill, a perennial herb commonly called Chinese lizard's tail or Sam-baek-cho in Korea, is used for the treatment of edema and inflammatory diseases in the Oriental folk medicine. In this study, we investigated the antioxidant activities and anti-inflammatory effects of the two extracts, water(WE) and ethyl acetate(EAE) from S.chinensis Baill. Methods : Anti-oxidant activity was evaluated using Fe2+ chelating and hydroxyl radical scavenging assay. DNA cleavage assay, and western blot and immunostaining for phospho-p65 were performed to evaluate anti-oxidative effect. Anti-inflammatory effect was performed using NO generation assay and western blot in LPS-stimulated RAW264.7 cell. Results : In Fe2+ chelating activity and hydroxyl radical scavenging activity, WE showed more strong scavenging activity for hydroxyl radical than EAE. WE scavenged hydroxyl radical by 12% at 3.2 ${\mu}g/ml$, 21% at 16 ${\mu}g/ml$, 32% at 80 ${\mu}g/ml$, 66% at 400 ${\mu}g/ml$ and 82% at 2000 ${\mu}g/ml$, respectively. In addition, WE showed more strong chelating activity than EAE. WE chelated Fe2+ ion by 1.1% at 3.2 ${\mu}g/ml$, 8.2% at 16 ${\mu}g/ml$, 26.3% at 80 ${\mu}g/ml$, 72% at 400 ${\mu}g/ml$ and 89% at 2000 ${\mu}g/ml$, respectively. Also, WE inhibited oxidative damage via its anti-oxidant activity. In anti-inflammatory effect, EAE inhibited NO production and iNOS expression. In addition EAE suppressed the NF-${\kappa}B$ and MAPK signaling pathway in LPS-stimulated RAW 264.7 cells. Conclusions : Together, these data indicate that S. chinensis Baill, shows anti-oxidant activity and anti-inflammatory effect.

Nicotinamide Mononucleotide Adenylyl Transferase 2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model

  • Xiaoyu Gu;Haibo Ni;XuGang Kan;Chen Chen;Zhiping Zhou;Zheng Ding;Di Li;Bofei Liu
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.400-408
    • /
    • 2023
  • Objective : Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. Methods : The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. Results : NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). Conclusion : NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

The venom of jellyfish, Chrysaora pacifica, induces neurotoxicity via activating Ca2+-mediated ROS signaling in HT-22 cells

  • Yang, Yoon-Sil;Kang, Young-Joon;Kim, Hye-Ji;Kim, Min-Soo;Jung, Sung-Cherl
    • Journal of Applied Biological Chemistry
    • /
    • 제62권4호
    • /
    • pp.347-353
    • /
    • 2019
  • Stings of jellyfish, which frequently occur in a warm season, cause severe pain, inflammation and sometimes irreversible results such as the death. Harmful venoms from jellyfish, therefore, have been studied for finding the therapeutic agents to relieve pain or to neutralize toxic components. However, it is still unclear if and how jellyfish venom reveal neuronal toxicity even though pain induction seems to result from the activation of nociceptors such as nerve endings. In this study, using HT-22 cell line, we investigated neurotoxic effects of the venom of Chrysaora pacifica (CpV) which appears in South-East ocean of Korea. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, CpV significantly reduced the viability of HT-22 cells in a dose-dependent manner. Additionally, in 2',7'-Dichlorofluorescin diacetate fluorescence test under the culture condition lacking dominant inflammatory factors, CpV remarkably increased the production of intracellular reactive oxygen species (ROS). Reduced responsive fluorescence to Rhodamine123 and increased expression of intracellular cytochrome c were also observed in HT-22 cells treated with CpV. These indicate that CpV-reduced viability of HT-22 cells may be due to the activation of apoptotic signalings mediated with oxidative stress and mitochondrial dysfunction. Furthermore, removing Ca2+ ion or adding N-acetyl-Lcystein remarkably blocked the CpV effect to reduce the viability of HT-22 cells. The findings in this study clearly demonstrate that CpV may activate Ca2+-mediated ROS signalings and mitochondrial dysfunction resulting in neuronal damage or death, and suggest that blocking Ca2+ pathway is a therapeutic approach to possibly block toxic effects of jellyfish venoms.

Curcumin attenuates renal ischemia reperfusion injury via JNK pathway with the involvement of p300/CBP-mediated histone acetylation

  • Yang, Lu;Chen, Xiaoxiang;Bi, Zirong;Liao, Jun;Zhao, Weian;Huang, Wenqi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.413-423
    • /
    • 2021
  • Apoptosis is proved responsible for renal damage during ischemia/reperfusion. The regulation for renal apoptosis induced by ischemia/reperfusion injury (IRI) has still been unclearly characterized to date. In the present study, we investigated the regulation of histone acetylation on IRI-induced renal apoptosis and the molecular mechanisms in rats with the application of curcumin possessing a variety of biological activities involving inhibition of apoptosis. Sprague-Dawley rats were randomized into four experimental groups (SHAM, IRI, curcumin, SP600125). Results showed that curcumin significantly decreased renal apoptosis and caspase-3/-9 expression and enhanced renal function in IRI rats. Treatment with curcumin in IRI rats also led to the decrease in expression of p300/cyclic AMP response element-binding protein (CBP) and activity of histone acetyltransferases (HATs). Reduced histone H3 lysine 9 (H3K9) acetylation was found near the promoter region of caspase-3/-9 after curcumin treatment. In a similar way, SP600125, an inhibitor of c-Jun N-terminal kinase (JNK), also attenuated renal apoptosis and enhanced renal function in IRI rats. In addition, SP600125 suppressed the binding level of p300/CBP and H3K9 acetylation near the promoter region of caspase-3/-9, and curcumin could inhibit JNK phosphorylation like SP600125. These results indicate that curcumin could attenuate renal IRI via JNK/p300/CBP-mediated anti-apoptosis signaling.

Phloroglucinol Attenuates Ultraviolet B-Induced 8-Oxoguanine Formation in Human HaCaT Keratinocytes through Akt and Erk-Mediated Nrf2/Ogg1 Signaling Pathways

  • Piao, Mei Jing;Kim, Ki Cheon;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.90-97
    • /
    • 2021
  • Ultraviolet B (UVB) radiation causes DNA base modifications. One of these changes leads to the generation of 8-oxoguanine (8-oxoG) due to oxidative stress. In human skin, this modification may induce sunburn, inflammation, and aging and may ultimately result in cancer. We investigated whether phloroglucinol (1,3,5-trihydroxybenzene), by enhancing the expression and activity of 8-oxoG DNA glycosylase 1 (Ogg1), had an effect on the capacity of UVB-exposed human HaCaT keratinocytes to repair oxidative DNA damage. Here, the effects of phloroglucinol were investigated using a luciferase activity assay, reverse transcription-polymerase chain reactions, western blot analysis, and a chromatin immunoprecipitation assay. Phloroglucinol restored Ogg1 activity and decreased the formation of 8-oxoG in UVB-exposed cells. Moreover, phloroglucinol increased Ogg1 transcription and protein expression, counteracting the UVB-induced reduction in Ogg1 levels. Phloroglucinol also enhanced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as Nrf2 binding to an antioxidant response element located in the Ogg1 gene promoter. UVB exposure inhibited the phosphorylation of protein kinase B (PKB or Akt) and extracellular signal-regulated kinase (Erk), two major enzymes involved in cell protection against oxidative stress, regulating the activity of Nrf2. Akt and Erk phosphorylation was restored by phloroglucinol in the UVB-exposed keratinocytes. These results indicated that phloroglucinol attenuated UVB-induced 8-oxoG formation in keratinocytes via an Akt/Erk-dependent, Nrf2/Ogg1-mediated signaling pathway.