• Title/Summary/Keyword: Damage-Healing

Search Result 128, Processing Time 0.029 seconds

Study on Damage Repair of Polymer Composites Using Self-Healing Technique (Self-healing Technique을 적용한 폴리머 복합재의 손상 보수 연구)

  • ;;M.R. Kessler;S.R. White
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.93-96
    • /
    • 2001
  • Structural polymer composites are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. A recent methodology for the damage repair of polymer composites using the self-healing technique is reported. The polymerization of the healing agent is triggered by contact with an embedded catalyst, being necessary to damage repair of polymer composites. For this purpose, the self-healing concept is introduced and the manufacturing process of microcapsule with the healing agent is briefly described. The polymerization between the healing agent and the catalyst is verified by the use of ESEM and IR spectroscopy. Finally the efficiency of the self-healing technique is investigated by measuring the critical load of TDCB specimen.

  • PDF

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.

Self-healing Coatings for an Anti-corrosion Barrier in Damaged Parts

  • Cho, Soo Hyoun
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.223-226
    • /
    • 2009
  • Polymer coatings are commonly applied to metal substrates to prevent corrosion in aggressive environments such as high humidity and under salt water. Once the polymer coating has been breached, for example due to cracking or scratches, it loses its effectiveness, and corrosion can rapidly propagate across the substrate. The self-healing system we will describe prevents corrosion by healing the damage through a healing reaction triggered by the actual damage event. This self-healing coating solution can be easily applied to most substrate materials, and our dual-capsule healing system provides a general approach to be compatible with most common polymer matrices. Specifically, we expect an excellent anti-corrosion property of the self-healing coatings in damaged parts coated on galvanized metal substrates.

Study on Manufacturing Process of Self-Healing Microcapsules for Damage Repair in Polymeric Composites (폴리머 복합재의 손상보수를 위한 자가치료용 마이크로캡슐 제조공정 연구)

  • 윤성호;박희원;소진호;홍순지;이종근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.793-796
    • /
    • 2003
  • This study dealt with the manufacturing process of self-healing microcapsules for damage repair in polymeric composites. The microcapsule was consisted with a DCPD (dicyclopentadiene) as the healing agent and a urea-formaldehyde resin as the wall section. The size distribution of microcapsules were measured by a particle size analyzer using a laser diffraction technique. Thermal stability of microcapsules was investigated by using a TGA under continuous and isothermal heating conditions. According to the results, these microcapsules were verified to be to thermally stable and have a great potential to be applicable for damage repair in polymeric composites.

  • PDF

Thermal Stability of Autonomic Microcapsules with Healing Agent (자가치료용 마이크로캡슐의 열적 안정성 연구)

  • 박희원;윤성호;홍순지;이종근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • This study dealt with autonomic microcapsules with the healing agent for damage repair of the composite structures. Autonomic microcapsules were made of a urea-formaldehyde resin for shell of microcapsule and a DCPD for the healing agent. Thermal analysis was conducted by using a DSC and a TGA for the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. According to the results, autonomic microcapsules were verified to be so thermally stable that the healing agent was kept inside the microcapsule until the shell of microcapsules were burned out.

  • PDF

Experimental investigation of thermal/mechanical characteristics to the maximal efficiency for self-healing technique (치료효율 극대화를 위한 자가치료제의 열적/기계적 특성 연구)

  • 허광수;오진오;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.626-629
    • /
    • 2004
  • Recently, the self-healing technique is being investigated to repair the damaged polymeric composites by the use of microcapsules with the healing agent. This technique can obtains both the damage detection and the damage repair simultaneously over the converntional repairing techniques. In this study, the effects of the catalyst ratio to the healing agent and thermal characteristics to the mixtures of healing agent are investigated through single lap shear tests and DSC. The Healing agents such as DCPD, ENB, and their mixtures are considered and Grubb's catalyst is used as a catalst.

  • PDF

Evaluation of Healing Properties of Asphalt Mixtures (아스팔트 혼합물의 손상회복 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.69-76
    • /
    • 2005
  • While the repeated traffic loading accumulates the damage of asphalt pavement, the damage has being healed during rest periods. And then, this healing enhances the fatigue life of asphalt pavement. A method was developed to determine the healing rate of asphalt mixture in terms of recovered dissipated creep strain energy (DCSE) per unit time, and the healing properties of four different asphalt mixtures were evaluated. The test procedure consists of repeated loading test and periodical resilient modulus tests. A normalized healing rate in terms of $DCSE/DCSE_{applied}$ was defined to evaluate the healing properties independently of the amount of damage incurred in the mixture. From the test results, it was concluded that the healing rates of asphalt mixtures were increased exponentially as the temperature was increased and more affected by the structural characteristics of mixture such as asphalt content than the binder characteristics such as the polymer modification.

  • PDF

Thermal Stability of Grubbs' Catalyst and Its Reactivity with Self-healing Agents (Grubbs' Catalyst의 열안정성 및 자가치료제와의 반응성 평가)

  • Yoon, Sung Ho;Shi, Ya Long;Feng, Jun;Jang, Se Yong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.395-401
    • /
    • 2015
  • This study investigated the thermal stability of Grubbs' catalyst and its reactivity with self-healing agents for self-healing damage repair. Four types of Grubbs' catalyst supplied by manufacturers were considered and each catalyst was tested in as-received and grinded conditions. Four types of self-healing agents were prepared by varying the mixing ratio of dicyclopentadiene (DCPD) and 5-ethylidene-2-norbonene (ENB). Heat flows as a function of temperature were measured through a differential scanning calorimetry (DSC) to determine the thermal stability of catalysts. Reaction heats of self-healing agents with the catalyst were measured to evaluate the reactivity of the catalyst. For this evaluation, Fluka Chemika Grubbs' catalyst was used based on the maximum temperature and the time to reach the maximum temperature. According to the results, catalysts had different shapes depending on the manufacturer and the results showed that the smaller the size of the catalyst the higher the reactivity with self-healing agents. As the ENB ratio in self-healing agents increased, the maximum temperature increased, and the time to reach the maximum temperature decreased. As the amount of the catalyst increased, the maximum temperature increased, and the time to reach the maximum temperature decreased. Considering the thermal stability of the catalyst and its reactivity with the self-healing agent, combination of 0.5 wt% catalyst and the D3E1 self-healing agent was optimal for self-healing damage repair. Finally, as the thermal decomposition may occur depending on the environmental temperature, the catalyst must not be exposed to temperature higher than that is necessary to maintain the thermal stability of the catalyst.

Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Damage-Healing Ability (손상치유 능력을 가지는 탄화규소의 강도 특성과 탄성파 특성)

  • KIM MI-KYUNG;AHN BYUNG-GUN;KIM JIN-WOOK;PARK IN-DUCK;AHN SEOK-HWAN;NAM KI-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.337-341
    • /
    • 2004
  • Engineering ceramics have superior heat resistance, corrosion resistance, and wear resistance. Consequently, these art significant candidates for hot-section structural components of heat engine and the inner containment of nuclear fusion reactor. Besides, some of them have the ability to heal cracks and great benefit can be anticipated with great benefit the structural engineering field. Especially, law fracture toughness of ceramics supplement with self-healing ability. In the present study, we have been noticed some practically important points for the healing behavior of silicon nitride, alumina, mullite with SiC particle and whisker. The presence of silicon carbide (SiC) in ceramic compound is very important for crack-healing behavior. However, self-healing of SiC has not been investigated well in detail yet. In this study, commercial SiC was selected as sample, which can be anticipated in the excellent crack healing ability. The specimens were produced three-point bending specimen with a critical semi-circular crack of which size that is about $50-700{\mu}m$. Three-point bending test and static fatigue test were performed cracked and healed SiC specimens. A monotonic bending load was applied to cracked specimens by three-point loading at different temperature. The purpose of this paper is to report Strength Properties and Elastic Waves Characteristics of Silicon Carbide with Crack Healing Ability.

  • PDF

Demage Repair for Polymeric Composite Carbody Using Self-Healing Concept (자가치료개념을 적용한 폴리머 복합재 차체의 손상보수기법 연구)

  • Yoon Sung-Ho;So Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.309-314
    • /
    • 2004
  • This study focused on the introduction of damage repair for polymeric composite carbody. called selfing tech-healinique. using microcapsules loaded with the healing agent The manufacturing process for microcapsules with the healing agent was introduced and tile characteristics of microcapsules manufactured by varying with various manufacturing process variables were evaluated. The DCPD was used for the healing agent and microcapsules were made of urea-formaldehyde resin. The magnitude and the size distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal stability was investigated by using a TGA under continuous and isothermal heating conditions for the healing agent. microcapsules without the healing agent. microcapsules with the healing agent.

  • PDF