• Title/Summary/Keyword: Damage recognition

Search Result 282, Processing Time 0.023 seconds

A Vision-based Damage Detection for Bridge Cables (교량케이블 영상기반 손상탐지)

  • Ho, Hoai-Nam;Lee, Jong-Jae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.39-39
    • /
    • 2011
  • This study presents an effective vision-based system for cable bridge damage detection. In theory, cable bridges need to be inspected the outer as well as the inner part. Starting from August 2010, a new research project supported by Korea Ministry of Land, Transportation Maritime Affairs(MLTM) was initiated focusing on the damage detection of cable system. In this study, only the surface damage detection algorithm based on a vision-based system will be focused on, an overview of the vision-based cable damage detection is given in Fig. 1. Basically, the algorithm combines the image enhancement technique with principal component analysis(PCA) to detect damage on cable surfaces. In more detail, the input image from a camera is processed with image enhancement technique to improve image quality, and then it is projected into PCA sub-space. Finally, the Mahalanobis square distance is used for pattern recognition. The algorithm was verified through laboratory tests on three types of cable surface. The algorithm gave very good results, and the next step of this study is to implement the algorithm for real cable bridges.

  • PDF

An Investigation on The Necessity of the Use of Radiation and The Recognition of Radiation Hazard among College Students (방사선 이용의 필요성 및 인체장해에 대한 대학생의 인식조사)

  • Han, Eun-Ok;Moon, In-Ok
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.7
    • /
    • pp.51-58
    • /
    • 2006
  • Background & Objectives: This study investigates the recognition on the necessity of the use of radiation for both college students who are considered that they have a high knowledge level in radiation and proposes basic materials to change the recognition of the use of radiation. Also, the investigation was applied to average people who showed the most negative attitudes on radiation. Methods: A questionnaire was applied to 600 college students for five days from October 10 to 15, 2005 and used in statistical analysis. Results: The average value obtained in the recognition of the use of radiation was 76.60 points in which male respondents who were majored in natural science, health, and engineering department and respondents who have experienced radiation related education, radiation diagnosis, and radiation treatment demonstrated higher levels. Also, the average value obtained in the recognition of the radiation damage was 71.66 points in which respondents who were majored in natural sciences, humanities, engineering, and health department showed higher levels than that of respondents who were majored in art and physical department. Groups that exhibited higher recognition levels in the necessity of the use of radiation were male respondents and respondents who were majored in natural science, humanities, and health department and have experienced radiation diagnosis and radiation treatment. In the results of the correlation analysis on the necessity of the use of radiation and recognition of radiation damages, the recognition of radiation damages was presented as negative attitudes in the case of the higher recognition level in the necessity of the use of radiation. Conclusions: Regarding the frequency of the use of radiation in Korea, a 80.9% of university students who showed a high education level had no experiences in radiation related education. Although they showed a relatively high level of 76.6 points in the recognition level of the necessity of the use of radiation, the negative attitude on the radiation damage was also presented as a high level of 71.7 points. Because the providing chance of radiation related information was limited as compared to the atomic power used in Korea and dependancy of the use of radiation, it is necessary to provide the basic information related in the use of radiation to the public. In addition, various investigations on the use of radiation and such negative attitudes are required in future for the public. Also, the correct information of the radiation safety should be delivered to the public.

  • PDF

A study on road damage detection for safe driving of autonomous vehicles based on OpenCV and CNN

  • Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.47-54
    • /
    • 2022
  • For safe driving of autonomous vehicles, road damage detection is very important to lower the potential risk. In order to ensure safety while an autonomous vehicle is driving on the road, technology that can cope with various obstacles is required. Among them, technology that recognizes static obstacles such as poor road conditions as well as dynamic obstacles that may be encountered while driving, such as crosswalks, manholes, hollows, and speed bumps, is a priority. In this paper, we propose a method to extract similarity of images and find damaged road images using OpenCV image processing and CNN algorithm. To implement this, we trained a CNN model using 280 training datasheets and 70 test datasheets out of 350 image data. As a result of training, the object recognition processing speed and recognition speed of 100 images were tested, and the average processing speed was 45.9 ms, the average recognition speed was 66.78 ms, and the average object accuracy was 92%. In the future, it is expected that the driving safety of autonomous vehicles will be improved by using technology that detects road obstacles encountered while driving.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Damage Detection in Floating Structure Using Static Strain Data (정적 변형률을 이용한 플로팅 구조물의 손상탐지)

  • Park, Soo-Yong;Jeon, Yong-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, people's desire for the waterfront space has been increasing, and more people want to spend their leisure time close to the water. This paper proposes a damage detection technique using the static strain for the floating structure. An existing damage index, in which the modal strain energy was utilized to identify possible location of damage, is expanded to apply the static strain. The new damage index is expressed in terms of the static strains of undamaged and damaged structures. After calculating damage index, the possible damage locations in the structure are determined by the pattern recognition technique. The accuracy and feasibility of the proposed method is demonstrated by using experimental strain data from a scale model of floating structure.

Damage detection using the improved Kullback-Leibler divergence

  • Tian, Shaohua;Chen, Xuefeng;Yang, Zhibo;He, Zhengjia;Zhang, Xingwu
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.291-308
    • /
    • 2013
  • Structural health monitoring is crucial to maintain the structural performance safely. Moreover, the Kullback-Leibler divergence (KLD) is applied usually to asset the similarity between different probability density functions in the pattern recognition. In this study, the KLD is employed to detect the damage. However the asymmetry of the KLD is a shortcoming for the damage detection, to overcoming this shortcoming, two other divergences and one statistic distribution are proposed. Then the damage identification by the KLD and its three descriptions from the symmetric point of view is investigated. In order to improve the reliability and accuracy of the four divergences, the gapped smoothing method (GSM) is adopted. On the basis of the damage index approach, the new damage index (DI) for detect damage more accurately based on the four divergences is developed. In the last, the grey relational coefficient and hypothesis test (GRCHT) is utilized to obtain the more precise damage identification results. Finally, a clear remarkable improvement can be observed. To demonstrate the feasibility and accuracy of the proposed method, examples of an isotropic beam with different damage scenarios are employed so as to check the present approaches numerically. The final results show that the developed approach successfully located the damaged region in all cases effect and accurately.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves (자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법)

  • Park, Seung Hee;Kim, Dong Jin;Lee, Chang Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2011
  • There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

Voice Recognition-Based on Adaptive MFCC and Deep Learning for Embedded Systems (임베디드 시스템에서 사용 가능한 적응형 MFCC 와 Deep Learning 기반의 음성인식)

  • Bae, Hyun Soo;Lee, Ho Jin;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.797-802
    • /
    • 2016
  • This paper proposes a noble voice recognition method based on an adaptive MFCC and deep learning for embedded systems. To enhance the recognition ratio of the proposed voice recognizer, ambient noise mixed into the voice signal has to be eliminated. However, noise filtering processes, which may damage voice data, diminishes the recognition ratio. In this paper, a filter has been designed for the frequency range within a voice signal, and imposed weights are used to reduce data deterioration. In addition, a deep learning algorithm, which does not require a database in the recognition algorithm, has been adapted for embedded systems, which inherently require small amounts of memory. The experimental results suggest that the proposed deep learning algorithm and HMM voice recognizer, utilizing the proposed adaptive MFCC algorithm, perform better than conventional MFCC algorithms in its recognition ratio within a noisy environment.