• Title/Summary/Keyword: Damage recognition

Search Result 282, Processing Time 0.026 seconds

Recognition of DNA Damage in Mammals

  • Lee, Suk-Hee
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.489-495
    • /
    • 2001
  • DNA damage by UV and environmental agents are the major cause of genomic instability that needs to be repaired, otherwise it give rise to cancer. Accordingly, mammalian cells operate several DNA repair pathways that are not only responsible for identifying various types of DNA damage but also involved in removing DNA damage. In mammals, nucleotide excision repair (NER) machinery is responsible for most, if not all, of the bulky adducts caused by UV and chemical agents. Although most of the proteins involved in NER pathway have been identified, only recently have we begun to gain some insight into the mechanism by which proteins recognize damaged DNA. Binding of Xeroderma pigmentosum group C protein (XPC)-hHR23B complex to damaged DNA is the initial damage recognition step in NER, which leads to the recruitment of XPA and RPA to form a damage recognition complex. Formation of damage recognition complex not only stabilizes low affinity binding of XPA to the damaged DNA, but also induces structural distortion, both of which are likely necessary for the recruitment of TFIIH and two structure-specific endonucleases for dual incision.

  • PDF

Pattern Recognition of modal Sensitivity for Structural Damage Identification of Truss Structure (트러스의 구조손상추정을 위한 진동모드민감도의 패턴인식)

  • 류연선
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2000
  • Despite many combined research efforts outstanding needs exist to develop robust safety-estimation methods for large complex structures. This paper presents a practical damage identification scheme which can be applied to truss structures using only limited modal responses. firstly a theory of pattern recognition (PR) is described. Secondly existing damage-detection algorithms are outlined and a newly-derived algorithms for truss structures. Finally the feasibility of the proposed scheme is evaluated using numerical examples of plane truss structures.

  • PDF

Bridge Damage Factor Recognition from Inspection Reports Using Deep Learning (딥러닝 기반 교량 점검보고서의 손상 인자 인식)

  • Chung, Sehwan;Moon, Seonghyeon;Chi, Seokho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.621-625
    • /
    • 2018
  • This paper proposes a method for bridge damage factor recognition from inspection reports using deep learning. Bridge inspection reports contains inspection results including identified damages and causal analysis results. However, collecting such information from inspection reports manually is limited due to their considerable amount. Therefore, this paper proposes a model for recognizing bridge damage factor from inspection reports applying Named Entity Recognition (NER) using deep learning. Named Entity Recognition, Word Embedding, Recurrent Neural Network, one of deep learning methods, were applied to construct the proposed model. Experimental results showed that the proposed model has abilities to 1) recognize damage and damage factor included in a training data, 2) distinguish a specific word as a damage or a damage factor, depending on its context, and 3) recognize new damage words not included in a training data.

Non-destructive evaluation and pattern recognition for SCRC columns using the AE technique

  • Du, Fangzhu;Li, Dongsheng
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.173-190
    • /
    • 2019
  • Steel-confined reinforced concrete (SCRC) columns feature highly complex and invisible mechanisms that make damage evaluation and pattern recognition difficult. In the present article, the prevailing acoustic emission (AE) technique was applied to monitor and evaluate the damage process of steel-confined RC columns in a quasi-static test. AE energy-based indicators, such as index of damage and relax ratio, were proposed to trace the damage progress and quantitatively evaluate the damage state. The fuzzy C-means algorithm successfully discriminated the AE data of different patterns, validity analysis guaranteed cluster accuracy, and principal component analysis simplified the datasets. A detailed statistical investigation on typical AE features was conducted to relate the clustered AE signals to micro mechanisms and the observed damage patterns, and differences between steel-confined and unconfined RC columns were compared and illustrated.

Earthquake Damage Monitoring for Underground Structures Based Damage Detection Techniques

  • Kim, Jin Ho;Kim, Na Eun
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.94-99
    • /
    • 2014
  • Urban railway systems are located under populated areas and are mostly constructed for underground structures which demand high standards of structural safety. However, the damage progression of underground structures is hard to evaluate and damaged underground structures may not effectively stand against successive earthquakes. This study attempts to examine initial damage-stage and to access structural damage condition of the ground structures using Earthquake Damage Monitoring (EDM) system. For actual underground structure, vulnerable damaged member of Ulchiro-3ga station is chosen by finite element analysis using applied artificial earthquake load, and then damage pattern and history of damaged members is obtained from measured acceleration data introduced unsupervised learning recognition. The result showed damage index obtained by damage scenario establishment using acceleration response of selected vulnerable members is useful. Initial damage state is detected for selected vulnerable member according to established damage scenario. Stiffness degrading ratio is increasing whereas the value of reliability interval is decreasing.

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

Damage detection of subway tunnel lining through statistical pattern recognition

  • Yu, Hong;Zhu, Hong P.;Weng, Shun;Gao, Fei;Luo, Hui;Ai, De M.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • Subway tunnel structure has been rapidly developed in many cities for its strong transport capacity. The model-based damage detection of subway tunnel structure is usually difficult due to the complex modeling of soil-structure interaction, the indetermination of boundary and so on. This paper proposes a new data-based method for the damage detection of subway tunnel structure. The root mean square acceleration and cross correlation function are used to derive a statistical pattern recognition algorithm for damage detection. A damage sensitive feature is proposed based on the root mean square deviations of the cross correlation functions. X-bar control charts are utilized to monitor the variation of the damage sensitive features before and after damage. The proposed algorithm is validated by the experiment of a full-scale two-rings subway tunnel lining, and damages are simulated by loosening the connection bolts of the rings. The results verify that root mean square deviation is sensitive to bolt loosening in the tunnel lining and X-bar control charts are feasible to be used in damage detection. The proposed data-based damage detection method is applicable to the online structural health monitoring system of subway tunnel lining.

Development of Damage Evaluation Technology Considering Variability for Cable Damage Detection of Cable-Stayed Bridges (사장교의 케이블 손상 검출을 위한 변동성이 고려된 손상평가 기술 개발)

  • Ko, Byeong-Chan;Heo, Gwang-Hee;Park, Chae-Rin;Seo, Young-Deuk;Kim, Chung-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2020
  • In this paper, we developed a damage evaluation technique that can determine the damage location of a long-sized structure such as a cable-stayed bridge, and verified the performance of the developed technique through experiments. The damage assessment method aims to extract data that can evaluate the damage of the structure without the undamage data and can determine the damage location only by analyzing the response data of the structure. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To evaluate the performance of the developed technique experimentally, cable damage experiments were conducted on model cable-stayed bridges. As a result, the damage assessment method considering variability automatically outputs the damageless data according to external force, and it is confirmed that the performance of extracting information that can determine the damage location of the cable through the analysis of the outputted damageless data and the measured damage data is shown.

Acoustic emission technique to identify stress corrosion cracking damage

  • Soltangharaei, V.;Hill, J.W.;Ai, Li;Anay, R.;Greer, B.;Bayat, Mahmoud;Ziehl, P.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.723-736
    • /
    • 2020
  • In this paper, acoustic emission (AE) and pattern recognition are utilized to identify the AE signal signatures caused by propagation of stress corrosion cracking (SCC) in a 304 stainless steel plate. The surface of the plate is under almost uniform tensile stress at a notch. A corrosive environment is provided by exposing the notch to a solution of 1% Potassium Tetrathionate by weight. The Global b-value indicated an occurrence of the first visible crack and damage stages during the SCC. Furthermore, a method based on linear regression has been developed for damage identification using AE data.

Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks

  • Kostinakis, Konstantinos G.;Morfidis, Konstantinos E.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.295-309
    • /
    • 2020
  • The construction of Reinforced Concrete (R/C) buildings with unreinforced masonry infills is part of the traditional building practice in many countries with regions of high seismicity throughout the world. When these buildings are subjected to seismic motions the presence of masonry infills and especially their configuration can highly influence the seismic damage state. The capability to avoid configurations of masonry infills prone to seismic damage at the stage of initial architectural concept would be significantly definitive in the context of Performance-Based Earthquake Engineering. Along these lines, the present paper investigates the potential of instant prediction of the damage response of R/C buildings with various configurations of masonry infills utilizing Artificial Neural Networks (ANNs). To this end, Multilayer Feedforward Perceptron networks are utilized and the problem is formulated as pattern recognition problem. The ANNs' training data-set is created by means of Nonlinear Time History Analyses of 5 R/C buildings with a large number of different masonry infills' distributions, which are subjected to 65 earthquakes. The structural damage is expressed in terms of the Maximum Interstorey Drift Ratio. The most significant conclusion which is extracted is that the ANNs can reliably estimate the influence of masonry infills' configurations on the seismic damage level of R/C buildings incorporating their optimum design.