• 제목/요약/키워드: Damage mechanism

검색결과 1,432건 처리시간 0.029초

지능형 사이버 공격 경로 분석 방법에 관한 연구 (A Study on Mechanism of Intelligent Cyber Attack Path Analysis)

  • 김남욱;이동규;엄정호
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.93-100
    • /
    • 2021
  • 지능형 사이버 공격으로 인한 피해는 시스템 운영 중단과 정보 유출뿐만 아니라 엄청난 규모의 경제적 손실을 동반한다. 최근 사이버 공격은 공격 목표가 뚜렷하며, 고도화된 공격 도구와 기법을 활용하여 정확하게 공격 대상으로 침투한다. 이러한 지능적인 사이버 공격으로 인한 피해를 최소화하기 위해서는 사이버 공격이 공격 대상의 핵심 시스템까지 침입하지 못하도록 공격 초기 또는 과정에서 차단해야 한다. 최근에는 빅데이터나 인공지능 기술을 활용하여 사이버 공격 경로를 예측하고 위험 수준을 분석하는 보안 기술들이 연구되고 있다. 본 논문에서는 자동화 사이버 공격 경로 예측 시스템 개발을 위한 기초 메커니즘으로 공격 트리와 RFI 기법을 활용한 사이버 공격 경로 분석 방법을 제안한다. 공격 트리를 활용하여 공격 경로를 가시화하고 각 공격 단계에서 RFI 기법을 이용하여 다음 단계로 이동할 수 있는 경로를 판단한다. 향후에 제안한 방법을 기반으로 빅데이터와 딥러닝 기술을 활용한 자동화된 사이버 공격 경로 예측 시스템의 메커니즘으로 활용할 수 있다.

식품안전 피해구제제도의 도입방안에 관한 연구 (A Study on the Introduction of Food Safety Damage Relief System)

  • 이병준
    • 한국중재학회지:중재연구
    • /
    • 제27권4호
    • /
    • pp.199-222
    • /
    • 2017
  • Currently, many punitive damages (or statutory damages) and class action laws are discussed in relation to the consumer damage relief system. It is in the background of the argument that the introduction of such a victim relief system will solve many small and large consumer damages. There are many cases in which the punitive damages compensation or the class action system are introduced in relation to the food safety damage naturally. Although the introduction of such a system can clearly help the consumer to relieve large-scale damage, it can not solve all the problems at once because the company can reject the system despite the introduction of such a system. In particular, class action lawsuits should have the same type of damage, but most of the damage caused by food safety is accompanied by physical harm, resulting in various complications such as the physical characteristics of the victim, the health environment. The class action system may not provide a solution in that the content and type of the damage may be different. In this regard, this study aims to investigate the introduction of the food safety damage relief system through the introduction of an administrative dispute settlement system by an administrative agency that occupies an absolute position in the existing consumer protection from this point of view. In reality, the Food and Drug Administration, which is the largest among government agencies related to food, operates a passive attitude consumer protection system such as function like guidance, supervision and surveillance. And it is necessary to make a complementary proposal. In the current law, there is only a small part of the consumer protection work that is positively legal, and even after the damage is scientifically identified, it is not possible to present the solution to the damage suffered by the consumer through legislation. This is a fact that has been raised. In this paper, we propose a reasonable and rapid disaster relief procedure through a separate mechanism within the administrative agency, which is the administration agency, that the dispute settlement procedure due to food safety damage is insufficient by solving the case through the court through counseling, dispute adjustment and civil proceedings. In order to solve the problem of food insecurity and the food industry, various ways of rational solution of the problem were considered. The possibility of (1) Establishment of a food safety dispute resolution committee; (2) Establishment of a food safety disaster relief committee; and (3) Establishment of a food safety disaster relief committee was discussed. In addition, a plan for the creation of a food damage compensation fund was also proposed.

비탄성 지진 해석을 통한 박스 터널의 손상 상태 및 손상 지수 규명 (Identification of damage states and damge indices of single box tunnel from inelastic seismic analysis)

  • 박두희;이태형;김한섭;박정선
    • 한국터널지하공간학회 논문집
    • /
    • 제18권2호
    • /
    • pp.119-128
    • /
    • 2016
  • 성능기반 설계에서 구조물의 안정성은 손상 상태와 이를 수치화한 손상 지수에 의해 평가한다. 지상 구조물에 대해서는 이들이 비교적 명확하게 정의되어 있으나 지중 구조물에 대한 연구 수행 사례는 매우 제한적이다. 본 연구에서는 국내 지하철 시스템에 널리 사용되는 박스형 개착식 터널에 작용하는 지진하중에 의한 손상 상태와 손상 지수를 일련의 비탄성 프레임 해석을 통하여 규명하였다. 터널의 3 단계 손상 상태는 구조물에 발생한 소성 힌지의 수에 의해 정의하였다. 손상 지수는 터널 구조 부재의 탄성 모멘트와 항복 모멘트의 비로 정의하여 탄성 해석만으로도 비탄성 거동과 파괴 메커니즘의 모사가 가능하도록 하였다. 또한 손상 지수를 자유장 전단 변형률의 함수로도 제시하였다. 전단 변형률은 1 차원 지반응답해석으로 쉽게 계산할 수 있으므로 이를 이용하여 간편하게 박스형 터널의 초기 내진 안정성 평가가 가능할 것으로 판단된다. 보다 일반적이고 보편적인 적용성 확보를 위해서는 추후 포괄적인 해석을 수행하여 다양한 형태의 터널과 지반에서의 전단 변형률 분포와 불확실성에 대한 연구가 진행되어야 할 것이다. 본 연구에서 제시된 터널 내진설계를 위한 손상 상태, 손상 지수, 그리고 전단파 속도 및 전단변형률 간의 상호관계 플래트폼은 새로운 아이디어를 담고 있으며 추후 설계에 널리 활용될 수 있을 것으로 판단된다.

Diagnostic Studies of Plasmas in Saline Solutions: the Frequency Effects and the Electrode Erosion Mechanism

  • Hsu, Cheng-Che
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.16-16
    • /
    • 2011
  • Plasmas in saline solutions receive considerable attention in recent years. How the operating parameters influence the plasma characteristics and how the electrode erosion occurs have been topics that require further study. In the first part of this talk, the effect of the frequency on the plasmas characteristics in saline solution driven by 50~1000 Hz AC power will be presented. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, one mm-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in the frequency, it shows the jetting mode, in which many smaller bubbles are continuous formed and jetted away from the electrode surface. Multiple mechanisms that are potentially responsible to such a change in bubble dynamics have been proposed and the dominant mechanism is identified. From the Stark broadening of the hydrogen optical emission line, electron densities in both modes are estimated. It shows clearly that the driving frequency greatly influences the bubble dynamics, which in turn alters the plasma behavior. In the second part, the study of the erosion of a tungsten electrode immersed in saline solution under conditions suitable for bio-medical applications is presented. The electrode is immersed in 0.1 M saline solution and is positively or negatively biased using a DC power source up to 600 V. It is identified that when the electrode is positively biased, erosion by the surface electrolytic oxidation is the dominant mechanism with an applied voltage below 150 V. An increase in the applied voltage leads to the formation of the plasma and the damage by the plasma and the thermal effect becomes more prominent. The formation of the gas film at the electrode surface leads to the formation of the plasma and hinders the electrolytic erosion. In the negatively-biased electrode, no electrolytic oxidation is seen and the damage is mostly likely due to the plasma erosion and the thermal effect.

  • PDF

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.

Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향 (Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

지반보강용 주입재의 성능향상을 위한 초음파 에너지의 활용 (Application of ultrasonic energy to enhance capability of soil improving material)

  • 문준호;;정강복;김영욱
    • 한국터널지하공간학회 논문집
    • /
    • 제19권4호
    • /
    • pp.567-576
    • /
    • 2017
  • 본 연구에서는 지반보강용 시멘트-페이스트에 초음파를 조사하여 온도변화, 점도, 일축압축강도, 육안관측 시험을 통해 초음파가 시멘트-페이스트에 어떠한 물리적 특성을 변화시키는지에 대하여 고찰하였다. 실험에 사용된 w/c는 50~100%까지 다양하게 진행하였으며, 그라우트재의 온도변화는 ${\pm}2^{\circ}C$내에서 범위를 벗어나지 않도록 조절하여 실험을 진행하였다. 실험결과 온도변화는 초음파 조사시간에 비례하여 일정하게 증가하였고, 초음파를 조사한 지반보강용 시멘트-페이스트 점도는 최대 40%까지 감소하는 것으로 나타났다. 일축압축강도는 평균 30% 증가하였으며 육안관측시험에서도 초음파를 조사한 시멘트-페이스트의 단면이 공극이 많이 감소하는 양상을 보였다.

탄성 루프형 바퀴를 이용한 장 내 이동 메커니즘 (Flexible Loop Wheel Mechanism for Intestine Movement)

  • 임형준;민현진;김병규;김수현
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.314-321
    • /
    • 2002
  • An endoscope is usually inserted into the human body for the inspection of the gullet, stomach, and large intestine (colon) and this may cause discomfort to patients and damage to tissues during diagnostic or therapeutic procedures. This situation necessitates a self-propelling endoscope. There are many kinds of mechanism to move in a rigid pipe. However, these methods are difficult to apply directly to the endoscope. The main reason is that human intestine cannot be considered as a uniform, straight, and rigid pipe. This paper proposes a flexible loop wheel mechanism, which is adaptable to the human intestine. This mechanism is designed and fabricated by a simple modeling, and tested by an experiment. Finally, the actuator is inserted into the pig colon.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Al 7075/CFRP 하이브리드 복합재료의 미시적 파괴특성에 대한 AE특성평가 (Evaluation of AR Characteristics on Microscopic Fracture Mechanism of A17075/CERP Hybrid Composite)

  • 이진경;이준현;윤한기
    • Composites Research
    • /
    • 제15권5호
    • /
    • pp.1-6
    • /
    • 2002
  • 하이브리드 복합재료는 FRP나 MMC와 같은 복합재료에 비하여 높은 비강도, 내피로 특성을 가지고 있기 때문에 많은 관심을 받고 있다. 그러나 하이브리드 복합재료는 금속과 FRP의 결합구조로 되어있기 때문에 매우 복잡한 파손기구를 가지고 있다. 최근에는 비파괴 기법을 이용하여 이러한 복합재료의 파손기구를 평가하고자 하는 연구가 수행되어지고 있다. 본 연구에서는 음향방출 기법을 이용하여 Al7075/CFRP 하이브리드 복합재료에 대한 손상정도 및 파손기구를 명확히 하고자 하였다. 특히 AE 사상수, 에너지, 진폭과 같은 AE 파라미터들은 Al7075/CFRP 하이브리드 복합재료의 파손과정을 평가하는데 효과적이었다. 더불어, 광학현미경을 이용하여 AE 신호와 시험편의 표면소상 특성과의 관계를 비교, 검토하였다.