• Title/Summary/Keyword: Damage mechanics

Search Result 899, Processing Time 0.021 seconds

Performance Evaluation of Conical Picks for Roadheader in Copper Mines (구리광산에 적용된 부분단면굴착기용 국산 코니컬 픽커터의 성능평가 연구)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Chulho;Lee, Gyu-Phil;Bae, Young Hwan;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.496-504
    • /
    • 2015
  • Roadheader that excavates ground using pick cutters installed on the cutting head is one of the partial-face machines. A conical cutter among pick cutters is excavation tool decreasing the loss of cutter using tungsten carbide insert at the tip of the cutter and it has been widely used in the roadheaders. In this study, durability performance for three kinds of conical cutters was evaluated in copper mines composed of Manto and conglomerate. After field test, the visual inspection as well as the weight loss measurement of pick cutters was carried out to investigate the damage of pick cutters. In addition, CT scan and SEM were performed to check whether or not crack and apertures in pick cutters. As results, the conical cutter with hardfacing was evaluated as having the best durability performance and it was unable to find cracks in all cutters investigated.

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Therapeutic Exercise for Low Back Pain (요부통증에 대한 운동치료)

  • Jung, Mun-Boung
    • Journal of Korean Physical Therapy Science
    • /
    • v.2 no.4
    • /
    • pp.817-822
    • /
    • 1995
  • Even though back pain therapy has greatly improved as spinal bio-mechanics is introduced, many patients still have difficulties due to low back pain. At the initial therapeutic stage, the aim of rehabilitation therapy for low back pain is pain control, but, at the later therapeutic stage, the prime aims are to reduce the late complication and to prevent the recurrence of low back pain. Accurate diagnosis should be a first step before any therapy is planned. Thus, accurate physical, neurologic, E.M.G. and radiologic tests are required to give prescription for therapeutic exercise to the patients. In addition to this, the roles of theraphists and therapeutic exercise should be re-evaluated after the therapeutic exercise is performed. Fist of all, the most important things are to educate the patients to understand the low back pain and to let the patients join the therapeutical planning. 1. Bed rest and muscle relaxing exercise for releasing the muscle tention are required for the treatment of acute low back pain. An active exercise is recommended rather than a passive exercise. If the therapeutic exercise depravate the low back pain, the exercise should be immediately terminated and the therapeutical exercise should be replanned. 2. For the treatment of the chronic back pain, stretching exercise and para-spinal muscle strengthening exercise should be performed steadily and actively to prevent the recurrence of low back pain and the low back injury due to minor damage. The patients should be educated to do proper exercise and to maintain good posture in everyday life. 3. As the low back pain is released and the body function is recovered, control of whole body function is necessary. Swiming, bicycling and walking for $30\sim40$ minutes a day and $3\sim4$ days a week are recommended. Other exercise could be recommended depending on the patients condition.

  • PDF

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

Analysis of a damaged industrial hall subjected to the effects of fire

  • Kmet, Stanislav;Tomko, Michal;Demjan, Ivo;Pesek, Ladislav;Priganc, Sergej
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.757-781
    • /
    • 2016
  • The results of diagnostics and analysis of an industrial hall located on the premises of a thermal power plant severely damaged by fire are presented in the paper. The comprehensive failure-related diagnostics, non-destructive and destructive tests of steel and concrete materials, geodetic surveying of selected structural members, numerical modelling, static analysis and reliability assessment were focused on two basic goals: The determination of the current technical condition of the load bearing structure and the assessment of its post fire resistance as well as assessing the degree of damage and subsequent design of reconstruction measures and arrangements which would enable the safe and reliable use of the building. The current mechanical properties of the steel material obtained from the tests and measured geometric characteristics of the structural members with imperfections were employed in finite element models to study the post-fire behaviour of the structure. In order to compare the behaviour of the numerically modelled steel roof truss, subjected to the effects of fire, with the real post-fire response of the damaged structure theoretically obtained resistance, critical temperature and the time at which the structure no longer meets the required reliability criteria under its given loading are compared with real values. A very good agreement between the simulated results and real characteristics of the structure after the fire was observed.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Numerical Homogenization in Concrete Materials Using Multi-Resolution Analysis (다중해상도해석을 이용한 콘크리트 재료의 수치적 동질화)

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.939-946
    • /
    • 2005
  • The stiffness properties of heterogeneous concrete materials and their degradation were investigated at different-levels of observations with aids of the opportunities and limitations of multi-resolution wavelet analysis. The successive Haw transformations lead to a recursive separation of the stiffness properties and the response into coarse-and fine-scale features. In the limit, this recursive process results in a homogenization parameter which is an average measure of stiffness and strain energy capacity at the coarse scale. The basic concept of multi-resolution analysis is illustrated with one and two-dimensional model problems of a two-phase particulate composite representative of the morphology of concrete materials. The computational studies include the meso-structural features of concrete in the form of a hi-material system of aggregate particles which are immersed in a hardened cement paste taking due to account of the mismatch of the two elastic constituents.

Force-based Coupling of Peridynamics and Classical Elasticity Models (페리다이나믹과 탄성체 모델의 연성기법 개발)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In solid mechanics, the peridynamics theory has provided a suitable framework for material failure and damage propagation simulation. Peridynamics is computationally expensive since it is required to solve enormous nonlocal interactions based upon integro-differential equations. Thus, multiscale coupling methods with other local models are of interest for efficient and accurate implementations of peridynamics. In this study, peridynamic models are restricted to regions where discontinuities or stress concentrations are present. In the domains characterized by smooth displacements, classical local models can be employed. We introduce a recently developed blending scheme to concurrently couple bond-based peridynamic models and the Navier equation of classical elasticity. We demonstrate numerically that the proposed blended model is suitable for point loads and static fracture, suggesting an alternative framework for cases where peridynamic models are too expensive, while classical local models are not accurate enough.

System seismic performance of haunch repaired steel MRFs : dual panel zone modeling and a case study

  • Lee, Cheol-Ho
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.125-141
    • /
    • 1998
  • Recent test results of steel moment connections repaired with a haunch on the bottom side of the beam have been shown to be a very promising solution to enhancing the seismic performance of steel moment-resisting frames. Yet, little is known about the effects of using such a repair scheme on the global seismic response of structures. When haunches are incorporated in a steel moment frame, the response prediction is complicated by the presence of "dual" panel zones. To investigate the effects of a repair on seismic performance, a case study was conducted for a 13-story steel frame damaged during the 1994 Northridge earthquake. It was assumed that only those locations with reported damage would be repaired with haunches. A new analytical modeling technique for the dual panel zone developed by the author was incorporated in the analysis. Modeling the dual panel zone was among the most significant consideration in the analyses. Both the inelastic static and dynamic analyses did not indicate detrimental side effects resulting from the repair. As a result of the increased strength in dual panel zones, yielding in these locations were eliminated and larger plastic rotation demand occurred in the beams next to the shallow end of the haunches. Nevertheless, the beam plastic rotation demand produced by the Sylmar record of 1994 Northridge earthquake was still limited to 0.017 radians. The repair resulted in a minor increase in earthquake energy input. In the original structure, the panel zones should dissipate about 80% (for the Oxnard record) and 70% (for the Sylmar record) of the absorbed energy, assuming no brittle failure of moment connections. After repair, the energy dissipated in the panel zones and beams were about equal.