• 제목/요약/키워드: Damage location

Search Result 933, Processing Time 0.03 seconds

Damage identification of isolators in base-isolated torsionally coupled buildings

  • Wang, Jer-Fu;Huang, Ming-Chih;Lin, Chi-Chang;Lin, Tzu-Kang
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.387-410
    • /
    • 2013
  • This paper deals with the damage assessment for isolators of base-isolated building systems considering the torsion-coupling (TC) effect by establishing damage indices. The damage indices can indicate the reduction in lateral stiffness of the isolator story as explicit formulas in terms of modal parameters. In addition, the damage location, expressed in terms of the estimated damage index and eccentricities before and after damage, is also presented. Numerical analysis shows that the proposed algorithms are applicable for general base-isolated multi-story TC buildings. A procedure from the analysis of seismic response to the implementation of damage indices is demonstrated by using a numerical case. A system identification technique is employed to extract modal parameters from seismic responses of a building. Results show that the proposed indices are capable of detecting the occurrence of damage and preliminarily estimating the location of damaged isolator.

Development of Damage Evaluation Technology Considering Variability for Cable Damage Detection of Cable-Stayed Bridges (사장교의 케이블 손상 검출을 위한 변동성이 고려된 손상평가 기술 개발)

  • Ko, Byeong-Chan;Heo, Gwang-Hee;Park, Chae-Rin;Seo, Young-Deuk;Kim, Chung-Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.77-84
    • /
    • 2020
  • In this paper, we developed a damage evaluation technique that can determine the damage location of a long-sized structure such as a cable-stayed bridge, and verified the performance of the developed technique through experiments. The damage assessment method aims to extract data that can evaluate the damage of the structure without the undamage data and can determine the damage location only by analyzing the response data of the structure. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To complete this goal, we developed a damage assessment technique that considers variability based on the IMD theory, which is a statistical pattern recognition technique, to identify the damage location. To evaluate the performance of the developed technique experimentally, cable damage experiments were conducted on model cable-stayed bridges. As a result, the damage assessment method considering variability automatically outputs the damageless data according to external force, and it is confirmed that the performance of extracting information that can determine the damage location of the cable through the analysis of the outputted damageless data and the measured damage data is shown.

Detection of delamination damage in composite beams and plates using wavelet analysis

  • Bombale, B.S.;Singha, M.K.;Kapuria, S.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.699-712
    • /
    • 2008
  • The effectiveness of wavelet transform in detecting delamination damages in multilayered composite beams and plates is studied here. The damaged composite beams and plates are modeled in finite element software ABAQUS and the first few mode shapes are obtained. The mode shapes of the damaged structures are then wavelet transformed. It is observed that the distribution of wavelet coefficients can identify the damage location of beams and plates by showing higher values of wavelet coefficients at the position of damage. The effectiveness of the method is studied for different boundary conditions, damage location and size for single as well as multiple delaminations in composite beams and plates. It is observed that both discrete wavelet transform (DWT) and continuous wavelet transform (CWT) can detect the presence and location of the damaged region from the mode shapes of the structures. DWT may be used to approximately evaluate the size of the delamination area, whereas, CWT is efficient to detect smaller delamination areas in composites.

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

Damage assessment of frame structure using quadratic time-frequency distributions

  • Chandra, Sabyasachi;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.411-425
    • /
    • 2014
  • This paper presents the processing of nonlinear features associated with a damage event by quadratic time-frequency distributions for damage identification in a frame structure. A time-frequency distribution is a function which distributes the total energy of a signal at a particular time and frequency point. As the occurrence of damage often gives rise to non-stationary, nonlinear structural behavior, simultaneous representation of the dynamic response in the time-frequency plane offers valuable insight for damage detection. The applicability of the bilinear time-frequency distributions of the Cohen class is examined for the damage assessment of a frame structure from the simulated acceleration data. It is shown that the changes in instantaneous energy of the dynamic response could be a good damage indicator. Presence and location of damage can be identified using Choi-Williams distribution when damping is ignored. However, in the presence of damping the Page distribution is more effective and offers better readability for structural damage detection.

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

Vibration-mode-based story damage and global damage of reinforced concrete frames

  • Guo, Xiang;He, Zheng
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.589-598
    • /
    • 2018
  • An attempt is conducted to explore the relationship between the macroscopic global damage and the local damage of shear-type RC frames. A story damage index, which can be expressed as multi-variate functions of modal parameters, is deduced based on the tridiagonal matrix of the shear-type frame. The global damage model is also originated from structural modal parameters. Due to the connection of modal damage indexes, the relationship between the macroscopic global damage and the local story damage is reasonably established. In order to validate the derivation, a case study is carried out via an 8-story shear-type frame. The sensitivities of modal damage indexes to the location and severity of local story damages are studied. The evolution of the global damage is investigated as well. Results show that the global damage is sensitive to the degree of story damage, but it's not sensitive to its location. As the number of the damaged stories increases, more and more modes will be involved. Meanwhile, the global damage evolution curve changes from the concave shape to the S-type and then finally transforms into the convex shape. Through the proposed story damage, modal damage and global damage model, a multi-level damage assessment method is established.

Results and implications of the damage index method applied to a multi-span continuous segmental prestressed concrete bridge

  • Wang, Ming L.;Xu, Fan L.;Lloyd, George M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 2000
  • Identification of damage location based on modal measurement is an important problem in structural health monitoring. The damage index method that attempts to evaluate the changes in modal strain energy distribution has been found to be effective under certain circumstances. In this paper two damage index methods using bending strain energy and shear strain energy have been evaluated for numerous cases at different locations and degrees of damage. The objective is to evaluate the feasibility of the damage index method to localize the damage on large span concrete bridge. Finite element models were used as the test structures. Finally this method was used to predict the damage location in an actual structure, using the results of a modal survey from a large concrete bridge.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Study on The Damage Location Detection of Shear Building Structures Using The Degradation Ratio of Story Stiffness (층강성 손상비를 이용한 전단형 건물의 손상위치 추정에 관한 연구)

  • Yoo, Seok-Hyung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.3-10
    • /
    • 2018
  • Damage location and extent of structure could be detected by the inverse analysis on dynamic response properties such as frequencies and mode shapes. In practice the measured difference of natural frequencies represent the stiffness change reliably, however the measured mode shape is insensitive for stiffness change, but provides spatial information of damage. The damage detection index on shear building structures is formulated in this study. The damage detection index could be estimated from mode shape and srory stiffness of undamaged structure and frequency difference between undamaged and damaged structure. For the verification of the observed damage detection method, the numerical analysis of Matlab and MIDAS and shacking table test were performed. In results, the damage index of damaged story was estimated so higher than undamaged stories that indicates the damaged story apparently.