• 제목/요약/키워드: Damage level

검색결과 3,002건 처리시간 0.034초

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

A Study on Salt Damage Pollution Forecasting by Measuring Leakage Current

  • Lee, Dae-Dong;Hyun, Dong-Seok;Kim, Young-Dal
    • 조명전기설비학회논문지
    • /
    • 제24권7호
    • /
    • pp.47-56
    • /
    • 2010
  • Faults due to salt damage prevent the provision of stable power supply because they affect large areas and require much time and man power for recovery. Korea, three sides of which are surrounded by sea, is especially exposed to the impact of sea winds and typhoons. Therefore, salt damage to power facilities is one of the greatest problems of Korea's power system. To prevent salt damage pollution of insulators, the salt damage deposit on the insulators is regularly measured, and the insulators are washed when their salt damage deposits are expected to reach a critical level. When salt is detected on the insulators, however, errors are likely to occur according to different workers and environments. Therefore, a leakage current measurement method was proposed in this study to check the salt damage pollution level and reduce these errors.

Nuclear DNA Damage and Repair in Normal Ovarian Cells Caused by Epothilone B

  • Rogalska, Aneta;Marczak, Agnieszka
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6535-6539
    • /
    • 2015
  • This study was designed to assess, whether a new chemotherapeutic microtubule inhibitor, Epothilone B (EpoB, Patupilone), can induce DNA damage in normal ovarian cells (MM14.Ov), and to evaluate if such damage could be repaired. The changes were compared with the effect of paclitaxel (PTX) commonly employed in the clinic. The alkaline comet assay technique and TUNEL assay were used. The kinetics of DNA damage formation and the level of apoptotic cells were determined after treatment with IC50 concentrations of EpoB and PTX. It was observed that PTX generated significantly higher apoptotic and genotoxic changes than EpoB. The peak was observed after 48 h of treatment when the DNA damage had a maximal level. The DNA damage induced by both tested drugs was almost completely repaired. As EpoB in normal cells causes less damage to DNA it might be a promising anticancer drug with potential for the treatment of ovarian tumors.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Evaluation of damage probability matrices from observational seismic damage data

  • Eleftheriadou, Anastasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.299-324
    • /
    • 2013
  • The current research focuses on the seismic vulnerability assessment of typical Southern Europe buildings, based on processing of a large set of observational damage data. The presented study constitutes a sequel of a previous research. The damage statistics have been enriched and a wider damage database (178578 buildings) is created compared to the one of the first presented paper (73468 buildings) with Damage Probability Matrices (DPMs) after the elaboration of the results from post-earthquake surveys carried out in the area struck by the 7-9-1999 near field Athens earthquake. The dataset comprises buildings which developed damage in several degree, type and extent. Two different parameters are estimated for the description of the seismic demand. After the classification of damaged buildings into structural types they are further categorized according to the level of damage and macroseismic intensity. The relative and the cumulative frequencies of the different damage states, for each structural type and each intensity level, are computed and presented, in terms of damage ratio. Damage Probability Matrices (DPMs) are obtained for typical structural types and they are compared to existing matrices derived from regions with similar building stock and soil conditions. A procedure is presented for the classification of those buildings which initially could not be discriminated into structural types due to restricted information and hence they had been disregarded. New proportional DPMs are developed and a correlation analysis is fulfilled with the existing vulnerability relations.

포항지진에 의한 필로티 건축물 피해조사 및 피해원인 분석 (Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake)

  • 김주찬;신승훈;오상훈
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.3-10
    • /
    • 2019
  • On November 15, 2017, an earthquake($M_L5.4$) occurred in Pohang. Pohang earthquake was the second largest earthquake since earthquake was observed in Korea, but structural damage caused by earthquake was biggest. Structural damage caused by Pohang earthquake was mainly caused by schools and pilotis, above all damage to pilotis was outstanding. This is because area where pilotis structures are concentrated is located near epicenter, and seismic performance of pilotis structures is not excellent compared with general structures. In this study, described results of damage investigation and analysis of damage causes through analysis of pilotis Structures on 131 buildings that were investigated immediately after Pohang earthquake. In addition, cause of damage was analyzed through analysis of seismic wave. Investigation site was selected to Jangseong-dong, where damage occurred in large numbers. Damage level was classified into A, B, and C level by measuring residual crack width and story drift of structural members.

Damage assessment of reinforced concrete beams including the load environment

  • Zhu, X.Q.;Law, S.S.;Hao, H.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.765-779
    • /
    • 2009
  • Quantitative condition assessment of structures has been traditionally using proof load test leading to an indication of the load-carrying capacity. Alternative approaches using ultrasonic, dynamics etc. are based on the unloaded state of the structure and anomalies may not be fully mobilized in the load resisting path and thus their effects are not fully included in the measured responses. This paper studies the effect of the load carried by a reinforced concrete beam on the assessment result of the crack damage. This assessment can only be performed with an approach based on static measurement. The crack damage is modelled as a crack zone over an area of high tensile stress of the member, and it is represented by a damage function for the simulation study. An existing nonlinear optimization algorithm is adopted. The identified damage extent from a selected high level load and a low load level are compared, and it is concluded that accurate assessment can only be obtained at a load level close to the one that creates the damage.

Markov Chain Model을 이용한 CFRP 복합재료의 피로손상누적거동에 대한 확률적 해석 (The Probabilistic Analysis of Fatigue Damage Accumulation Behavior Using Markov Chain Model in CFRP Composites)

  • 김도식;김정규;김인배
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1241-1250
    • /
    • 1996
  • The characteristics of fatigue cumulative damage and fatigue life of 8-harness satin woven CFRP composites with a circular hole under constant amplitude and 2-level block loading are estimated by Stochastic Makov chain model. It is found in this study that the fatigue damage accumulation behavior is very random and the fatigue damage is accumulated as two regions under constant amplitude fatigue loading. In constant amplitude fatigue loading the predicted mean number of cycles to a specified damage state by Markov chain model shows a good agreement with the test result. The predicted distribution of the fatigue cumulative damage by Markov chain model is similar to the test result. The fatigue life predictions under 2-level block loading by Markov chain model revised are good fitted to the test result more than by 2-parameter Weibull distribution function using percent failure rule.

충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계 (A Design Guide for Composite Laminates by the Compressive after Impact Tests)

  • 정태은;박경하;류정주
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

Seismic performance and damage evaluation of concrete-encased CFST composite columns subjected to different loading systems

  • Xiaojun Ke;Haibin Wei;Linjie Yang;Jin An
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.121-134
    • /
    • 2023
  • This paper tested 11 concrete-encased concrete-filled steel tube (CFST) composite columns and one reinforced concrete column under combined axial compression and lateral loads. The primary parameters, including the loading system, axial compression ratio, volume stirrup ratio, diameter-to-thickness ratio of the steel tube, and stirrup form, were varied. The influence of the parameters on the failure mode, strength, ductility, energy dissipation, strength degradation, and damage evolution of the composite columns were revealed. Moreover, a two-parameter nonlinear seismic damage model for composite columns was established, which can reflect the degree and development process of the seismic damage. In addition, the relationships among the inter-story drift ratio, damage index and seismic performance level of composite columns were established to provide a theoretical basis for seismic performance design and damage assessments.