• 제목/요약/키워드: Damage evaluation process

검색결과 297건 처리시간 0.021초

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method)

  • 문홍비;이정인;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

유체해석 프로그램을 이용한 골재의 입자크기 및 입도, 구성위치에 따른 배수층의 특성 평가 (Evaluation of characteristics of drainage layer according to particle size, particle size, and compositional location of aggregate using fluid analysis program)

  • 임창민;권현우;김영민;조도영;이건철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.147-148
    • /
    • 2022
  • Due to recent climate abnormalities, the form of rainfall is changing to localized torrential rains. Localized torrential rains cause flooding in urban areas. In addition, in various industrial fields, there are cases where materials necessary for the process are kept outdoors, and damage from material loss and flooding of stockyards occurs during heavy rain. Accordingly, it is necessary to introduce a drainage layer where flooding is expected. This drainage layer places the aggregate inside and allows rainwater to penetrate and drain into the voids between the aggregates. However, the amount of voids differs according to the particle size distribution and particle size of the aggregate, and the drainage performance varies according to the compositional location of the aggregate. Therefore, in this study, the drainage characteristics according to the particle size, particle size, and compositional location of aggregates are analyzed using a fluid analysis program.

  • PDF

Procedural steps for reliability evaluation of ultrasonically welded REBCO coated conductor lap-joints under low cycle fatigue test condition

  • Michael De Leon;Mark Angelo Diaz;Hyung-Seop Shin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.28-31
    • /
    • 2023
  • This study presents a comprehensive procedure for the low cycle fatigue test of ultrasonically welded (UW) coated conductor (CC) lap-joints. The entire process is examined in detail, from the robust fabrication of the UW REBCO CC joints to the reliability testing under a low number of repeated cycle fatigue conditions. A continuous Ic measurement system enables real-time monitoring of Ic variations throughout the fatigue tests. The study aims to provide a step-by-step procedure that involves joint fabrication, electromechanical property (EMP) tests under uniaxial tension for stress level determination, and subsequent low-cycle fatigue tests. The joints are fabricated using a hybrid method that combines UW with adding In-Sn soldering, achieving a flux-free hybrid welding approach (UW-HW flux-free). The selected conditions for the low cycle fatigue tests include a stress ratio of R=0.1 and a frequency of 0.02 Hz. The results reveal some insights into the fatigue behavior, irreversible changes, and cumulative damage in the CC joints.

발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석 (Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants)

  • 이승준
    • Corrosion Science and Technology
    • /
    • 제22권5호
    • /
    • pp.351-358
    • /
    • 2023
  • Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides

  • Seyeon Kim;Sanghoon Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.1975-1988
    • /
    • 2024
  • It is important to maintain cladding integrity in spent nuclear fuel management. This study proposes a numerical analysis method to evaluate the fracture resistance of irradiated zirconium alloy cladding under pinch load known to cause Mode-III failure. The mechanical behavior and fracture of the cladding under pinch loading can be evaluated by a Ring Compression Test (RCT). To simulate the fracture of hydride precipitates, zirconium matrix, and Zr/hydride interfaces under the stress field generated by RCT, a micro-structure crack propagation simulation method based on Continuum Damage Mechanics (CDM) has been proposed. Our RCT simulation model was constructed from microscopic images of irradiated cladding. In this study, we developed an automated process to generate a pixel-based finite element model by separating the hydride precipitates, zirconium matrix, and interfaces using an image segmentation method. The appropriate element size was selected to ensure the efficiency and accuracy of a crack propagation simulation. The load-displacement curves and strain energies from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to establish the failure criterion of fuel rods under pinch loading. The advantages and limitations of the proposed method are fully discussed here.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.649-665
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

자동차 방진고무부품 통합설계시스템 개발 (Development of Integrated Design System for Automotive Rubber Components)

  • 우창수;김완두;박현성;신외기
    • Elastomers and Composites
    • /
    • 제47권3호
    • /
    • pp.188-193
    • /
    • 2012
  • 고무부품의 신뢰성을 확보하기 위해서는 피로수명예측 및 평가기술 개발이 중요하다 하겠다. 최근에 고무부품에 대한 고 성능, 고 신뢰성을 위해 설계, 해석 및 평가기술이 요구되고 있으나, 지금까지는 경험과 시행착오적인 방법으로 개발되고 있는 실정이다. 따라서, 본 연구에서는 고무소재에 대해 배합조건, 기계적 특성, 열화 및 피로수명 등을 포함하는 고무소재 물성 데이터베이스를 구축하고, 고무부품의 특성해석 결과를 데이터베이스와 연계하여 고무부품의 피로해석 모델을 개발하였으며, 실제 피로시험 결과를 통하여 개발된 모델의 타당성을 검증하였다.

Comparison of seismic progressive collapse distribution in low and mid rise RC buildings due to corner and edge columns removal

  • Karimiyan, Somayyeh
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.691-707
    • /
    • 2020
  • One of the most important issues in structural systems is evaluation of the margin of safety in low and mid-rise buildings against the progressive collapse mechanism due to the earthquake loads. In this paper, modeling of collapse propagation in structural elements of RC frame buildings is evaluated by tracing down the collapse points in beam and column structural elements, one after another, under earthquake loads and the influence of column removal is investigated on how the collapse expansion in beam and column structural members. For this reason, progressive collapse phenomenon is studied in 3-story and 5-story intermediate moment resisting frame buildings due to the corner and edge column removal in presence of the earthquake loads. In this way, distribution and propagation of the collapse in progressive collapse mechanism is studied, from the first element of the structure to the collapse of a large part of the building with investigating and comparing the results of nonlinear time history analyses (NLTHA) in presence of two-component accelograms proposed by FEMA_P695. Evaluation of the results, including the statistical survey of the number and sequence of the collapsed points in process of the collapse distribution in structural system, show that the progressive collapse distribution are special and similar in low-rise and mid-rise RC buildings due to the simultaneous effects of the column removal and the earthquake loads and various patterns of the progressive collapse distribution are proposed and presented to predict the collapse propagation in structural elements of similar buildings. So, the results of collapse distribution patterns and comparing the values of collapse can be utilized to provide practical methods in codes and guidelines to enhance the structural resistance against the progressive collapse mechanism and eventually, the value of damage can be controlled and minimized in similar buildings.

PSC-Box 교량에 적용된 탄성고무 받침과 납-고무 받침의 노후화 효과를 고려한 지진응답의 평가 (Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge)

  • 정연희;송종걸;신수봉
    • 한국지진공학회논문집
    • /
    • 제23권6호
    • /
    • pp.311-319
    • /
    • 2019
  • The number of aged bridges is increasing so that bridges over 30 years old account for about 11% of all bridges. Consequently, the development of a seismic performance evaluation method that considers the effects of ageing is essential for a seismic retrofitting process for improvement of the seismic safety of existing old bridges. Assessment of the damage situation of bridges after the recent earthquakes in Korea has been limited to the bearings, anchor, and concrete mortar on piers. The purpose of this study is to evaluate the seismic responses of PSC box girder bridges by considering the ageing effect of rubber bearings (RBs) and lead-rubber bearings (LRBs). The modification factor proposed by AASHTO is used to take into account the ageing effect in the bearings. PSC box girder bridges with RBs and LRBs were 3D modeled and analyzed with the OpenSEES program. In order to evaluate the ageing effect of RBs and LRBs, 40 near fault and 40 far field records were used as the input earthquakes. When considering the effect of ageing, the displacement responses and shear forces of bridge bearings (RBs and LRBs) were found to increase mostly under the analytical conditions. It was shown that the effect of ageing is greater in the case of RBs than in the case of LRBs.

ICF 도구를 적용한 앞십자인대 재건술 환자의 고유수용성신경근촉진법 중재전략의 증례 (A Case Report of a Proprioceptive Neuromuscular Facilitation Intervention Strategy Applied with an ICF Tool in a Patient with Anterior Cruciate Ligament Reconstruction)

  • 송명수;김범룡;김창헌;노현정;강미경
    • PNF and Movement
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: The purpose of this study was to use an ICF tool in an intervention for anterior cruciate ligament reconstruction (ACLR) patients to examine and evaluate the patients' functional problems, measure the results of the intervention, and present the process of preparing proprioceptive neuromuscular facilitation (PNF) intervention strategies, thereby contributing to changes in and development of relevant future clinical practices. Methods: A PNF rehabilitation exercise program using an ICF tool was applied to ACLR patients five times per week for four weeks. To measure the resulting changes, the ICF evaluation display, the visual analog scale (VAS), the manual muscle test (MMT), the range of motion (ROM) test, the Lysholm knee score (LKS), and the muscle endurance test (MET) were used. Results: After the intervention was applied to the ACLR patients, improvements were achieved in all the tests: ICF evaluation display, VAS, MMT, ROM, LKS, and MET. Conclusion: Utilizing the ICF tool, this study identified functional problems of ACLR patients. When the intervention was applied, physical functions improved, and structural damage was reduced, leading to enhanced levels of functional activities such as postural changes, posture maintenance, gait, movements, and movements between different places. The patients were able to complete the teacher training, which was their goal.