• Title/Summary/Keyword: Damage curves

Search Result 407, Processing Time 0.026 seconds

Ductile Fracture Behavior of AS4P Under Mixed Mode (I/II) Loading

  • Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.476-484
    • /
    • 2002
  • The aim of this study is to investigate the ductile fracture behavior under mixed mode (I/II) loading using SA533B pressure vessel steel. Anti-symmetric 4-point (AS4P) bending tests were performed to obtain the J-R curves under two different mixed mode (I/II) loadings. In addition, finite element analysis using Rousselier Ductile Damage Theory was carried out to predict the J-R curves under mixed mode (I/II) loadings. In conclusions, the J-R curves under. Mixed Mode (I/II) loading were located between those of Mode I and Mode II loading. When the mixity of mixed mode (I/II) loading was high, the J-R curve of mixed mode (I/II) loading approached that of pure mode I loading after some amount of crack propagation. In contrast with the above fact, if the mixity was low, the J-R curve took after that of pure mode II loading. Finally, it was found that the predicted J-R curves made a good agreement with the test data through the tuning procedures of $\beta$ values at the different mixed mode (I/II) loading.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

Development of Seismic Damage Evaluation factor of Reinforced Concrete Pier for Fragility Analysis (취약도 해석을 위한 철근콘크리트 교각의 지진손상 평가인자 결정)

  • 고현무;이지호;강중원;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.308-315
    • /
    • 2002
  • Fragility analysis is widely used for the seismic safety evaluation of a structure. In fragility analysis, damage evaluation is a crucial factor. Most of the present fragility analyses use the representative responses such as displacement and absorbed hysteretic energy as a tool of damage evaluation. But damage evaluation method that can represent the local damage of a structure is required in the case of piers of which the local damage can cause the whole failure of bridge system. Therefore this study proposes a damage index, which can represent the distribution and magnitude of local damage by using the Lee and Fenves'plastic-damage model. Using the proposed damage index, fragility curves and damage probability matrix of pier are produced and fragility analysis is performed.

  • PDF

Damage and stiffness research on steel shape steel fiber reinforced concrete composite beams

  • Xu, Chao;Wu, Kai;Cao, Ping zhou;Lin, Shi qi;Xu, Teng fei
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.513-525
    • /
    • 2019
  • In this work, an experimental research has been performed on Steel Fiber-Steel Reinforced Concrete (SFSRC)specimens subjected to four-point bending tests to evaluate the feasibility of mutual replacement of steel fibers and conventional reinforcement through studying failure modes, load-deflection curves, stiffness of characteristic points, stiffness degradation curves and damage analysis. The variables considered in this experiment included steel fiber volume percentage with and without conventional reinforcements (stirrups or steel fibers) with shear span depth ratios of S/D=2.5 and 3.5. Experimental results revealed that increasing the volume percentage of steel fiber decreased the creation and propagation of shear and bond cracks, just like shortening the stirrups spacing. Higher crack resistance and suturing ability of steel fiber can improve the stability of its bearing capacity. Both steel fibers and stirrups improved the stiffness and damage resistance of specimens where stirrups played an essential role and therefore, the influence of steel fibers was greatly weakened. Increasing S/D ratio also weakened the effect of steel fibers. An equation was derived to calculate the bending stiffness of SFSRC specimens, which was used to determine mid span deflection; the accuracy of the proposed equation was proved by comparing predicted and experimental results.

Seismic Performance based Fragility Analysis of Bridge Structure in terms of Soil Conditions (지반조건을 고려한 교량의 내진성능기반 취약도 해석)

  • Lee, Dae-Hyoung;Hong, Hyung-Gi;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.73-76
    • /
    • 2008
  • The damage of earthquakes have to achieve by probabilistic evaluation because of uncertainty of earthquake. Fragility analysis is a useful tool for predicting the probability of damage induced by the probable earthquake. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for the pier of prestressed concrete (PSC) bridge subjected to given ground acceleration. At each 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses were performed for the damage states of the pier of PSC bridge structures. These damage states are described by displacement ductility result from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for the pier of PSC bridges with five types of dominant frequencies were constructed assuming a log-nomal distribution. It was found that there was a significant effect on the fragility curves due to the dominant frequencies.

  • PDF

Seismic Fragility Analysis of RC Bridge Piers in Terms of Seismic Ductility (철근콘크리트 교각의 연성 능력에 따른 지진취약도)

  • Chung, Young-Soo;Park, Chang-Young;Park, Ji-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.91-102
    • /
    • 2007
  • Through lessons in recent earthquakes, the bridge engineering community recognizes the need for new seismic design methodologies based on the inelastic structural performance of RC bridge structures. This study represents results of performance-based fragility analysis of reinforced concrete (RC) bridge. Monte carlo simulation is performed to study nonlinear dynamic responses of RC bridge. Two-parameter log-normal distribution function is used to represent the fragility curves. These two-parameters, referred to as fragility parameters, are estimated by the traditional maximum likelihood procedure, which is treated each event of RC bridge pier damage as a realization of Bernoulli experiment. In order to formulate the fragility curves, five different damage states are described by two practical factors: the displacement and curvature ductility, which are mostly influencing on the seismic behavior of RC bridge piers. Five damage states are quantitatively assessed in terms of these seismic ductilities on the basis of numerous experimental results of RC bridge piers. Thereby, the performance-based fragility curves of RC bridge pier are provided in this paper. This approach can be used in constructing the fragility curves of various bridge structures and be applied to construct the seismic hazard map.

Estimation of Fracture Resistance Curves of Nuclear Materials Using Small Punch Specimen (소형펀치 시편을 이용한 원자력 재료의 파괴저항곡선 예측)

  • Chang, Yoon-Suk;Kim, Jong-Min;Choi, Jae-Boong;Kim, Min-Chul;Lee, Bong-Sang;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.70-76
    • /
    • 2007
  • Elastic-plastic fracture mechanics is popularly used for integrity evaluation of major components, however, it is not easy to extract standard specimens from operating facility. This paper examines how ductile fracture toughness is characterized by a small punch testing technique in conjunction with finite element analyses incorporating a damage model. At first, micro-mechanical parameters constituting Rousselier model are calibrated for typical nuclear materials using both estimated and experimental load-displacement (P-$\delta$) curves of miniaturized specimens. Then, fracture resistance (J-R) curves of relatively larger standard CT specimens are predicted by finite element analyses employing the calibrated parameters and compared with corresponding experimental ones. It was proven that estimated results by the proposed method using small punch specimen is promising and might be used as a useful tool for ductile crack growth evaluation.

An Assessment Method for Voltage Sag in Power Distribution System using a Fuzzy Model (퍼지 모델을 이용한 배전 계통에서의 순간전압강하 평가 방식)

  • Yun, Sang-Yun;O, Jeong-Hwan;Kim, Eon-Seok;Kim, Nak-Gyeong;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.177-184
    • /
    • 2000
  • In this paper, we proposes a method for assessing the effect of voltage sag in power distribution systems using fuzzy model. The proposed method is based on the reliability data of distribution system and specified computer business equipment manufacturer association(SCBEMA) curve that express the representative power acceptability curve by voltage sag for each customer type. The SCBEMA curves are made by using the CBEMA curves obtained from the experiment for the customers sensitive equipment. In order to transform SCBEMA curves to the differential damage by voltage sag, a fuzzy model is used. The proposed fuzzy model is composed to reflect two parameters of customers damage by voltage sag. One is the duration and magnitude of voltage sag and the other is the different risk due to the customer types. The Monte Carlo simulation method and the historical reliability data in KEPCO ae used for case studies.

  • PDF

Development of Deduct Value Curves for the Pavement Condition Index of Asphalt Airfield Pavement (아스팔트 공항포장의 PCI 산출을 위한 공제값 곡선 개발)

  • Lee, Kang-Jin;Seo, Young-Chan;Cho, Nam-Hyun;Park, Dae-Wook
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2013
  • PURPOSES: This study is to develop the deduct value curves for the calculation of pavement condition index of asphalt airfield pavement. METHODS: To develop the deduct value curves of asphalt airfield pavement, panel rating was conducted to decide the pavement condition based on pavement distress type, severity, and density. RESULTS: Results show that standard deviation of deduct values by panel rating is increased at higher severity level and as damage density increases. The deduct value of alligator cracking show the highest. CONCLUSIONS: The deduct value curves based on panel rating could be used without existing problems which were occurred in Shahin's method.