• Title/Summary/Keyword: Damage curves

Search Result 407, Processing Time 0.026 seconds

Effective time-frequency characterization of Lamb wave dispersion in plate-like structures with non-reflecting boundaries

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.195-205
    • /
    • 2018
  • Research on Lamb wave-based damage identification in plate-like structures depends on precise knowledge of dispersive wave velocity. However, boundary reflections with the same frequency of interest and greater amplitude contaminate direct waves and thus compromise measurement of Lamb wave dispersion in different materials. In this study, non-reflecting boundaries were proposed in both numerical and experimental cases to facilitate time-frequency characterization of Lamb wave dispersion. First, the Lamb wave equations in isotropic and laminated materials were analytically solved. Second, the non-reflecting boundaries were used as a series of frames with gradually increased damping coefficients in finite element models to absorb waves at boundaries while avoiding wave reflections due to abrupt property changes of each frame. Third, damping clay was sealed at plate edges to reduce the boundary reflection in experimental test. Finally, the direct waves were subjected to the slant-stack and short-time Fourier transformations to calculate the dispersion curves of phase and group velocities, respectively. Both the numerical and experimental results suggest that the boundary reflections are effectively alleviated, and the dispersion curves generated by the time-frequency analysis are consistent with the analytical solutions, demonstrating that the combination of non-reflecting boundary and time-frequency analysis is a feasible and reliable scheme for characterizing Lamb wave dispersion in plate-like structures.

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

A Study on the Noise Characteristics of noise occurred when medical examination in dental clinic

  • Ji, Dong-Ha;Lee, Yong-Gyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.163-170
    • /
    • 2018
  • This study was conducted to investigate the effects of noise from dental clinics on workers and to establish a reduction plan. The noise generated by the treatment instrument(Ultrasonic scaler, Hand piece, 3-way syringe, Suction, Compressor) was measured in order to determine the characteristics(level, frequency) of the noise during medical treatment(Oral prophylaxis, Conservation treatment, Prosthesis treatment, Implant Scaling, Tooth eliminating). We also assessed the noise levels in dental clinic using evaluation indicators such as NR-curves and NRN. The results of the analysis showed that the noise generated during the treatment was 85dB(A) ~ 70dB(A) and that the high frequency component was dominant, which would affect the workers working at the dental clinic. The NR-curve analysis showed NR-67 to NR-83 and the high frequency components of 4kHz to 8kHz were predominant and far exceeded noise levels in the workplace. To minimize the noise damage of workers and to provide high quality medical service, it is necessary to establish countermeasures such as wearing a soundproof and periodic hearing tests.

Effect of Ohmic Heating on Rheological Property of Starches (옴가열이 전분의 레올로지 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.4
    • /
    • pp.304-311
    • /
    • 2019
  • Ohmic heating is a heating method based on the principle when an electrical current passes through food. Since this method is internal, electrical current damage occurred during heating treatment. The results of ohmic heated starch's external structure, X-ray diffraction, DSC analysis and RVA were differed from those of conventional heating at the same temperature. Several starches changed more rigid by structure re-aggregation. This change in starch was caused by change of physical, chemical, rheological property. The rheology of ohmic heated potato and corn starch of different heated methods were compared with chemically modified starch. After gelatinization, sample starch suspension (2%, 3%) measured flow curves by rheometer. Cross-linked chemically modified starch's shear stress was decreased with degree of substitution reversibly. Ohmic heated more dramatic, at $60^{\circ}C$. Potato starch's shear stress was less than commercial high cross-linked modified starch. Flow curves of potato starches measured at $4^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$. Showed that Ohmic heated potato starch's shear stress ranging between $4^{\circ}C$ and $20^{\circ}C$ was narrower than modified starch. According to this study, ohmic heated potato starch can be used by decreasing viscosity agent like cross-linked modified starch.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

Probabilistic seismic assessment of RC box-girder bridges retrofitted with FRP and steel jacketing

  • Naseri, Ali;Roshan, Alireza Mirzagoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.359-379
    • /
    • 2020
  • Due to susceptibility of bridges in the past earthquakes, vulnerability assessment and strengthening of bridges has gained a particular significance. The objective of the present study is to employ an analytical method for the development of fragility curves, as well as to investigate the effect of strengthening on the RC box-girder bridges. Since fragility curves are used for pre-and post-earthquake planning, this paper has attempted to adopt the most reliable modeling assumptions in order to increase the reliability. Furthermore, to acknowledge the interaction of soil, abutment and pile, the effect of different strengthening methods, such as using steel jacketing and FRP layers, the effect of increase in the bridge pier diameter, and the effect of vertical component of earthquake on the vulnerability of bridges in this study, a three-span RC box-girder bridge was modeled in 9 different cases. Nonlinear dynamic analyses were carried out on the studied bridges subjected to 100 ground motion records via OpenSEES platform. Therefore, the fragility curves were plotted and compared in the four damage states. The results revealed that once the interaction of soil and abutment and the vertical component of the earthquake are accounted for in the calculations, the median fragility is reduced, implying that the bridge becomes more vulnerable. It was also confirmed that steel jackets and FRP layers are suitable methods for pier strengthening which reduces the vulnerability of the bridge.

Damage Estimation of Steel Bridge Members by Fatigue Vulnerability Curves Considering Deterioration due to Corrosion with Time (시간에 따른 부식열화가 고려된 피로취약도 곡선을 이용한 강교의 손상 평가)

  • Kim, Hyo-Jin;Lee, Hyeong-Cheol;Jun, Suk-Ky;Lee, Sang-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • A method for assessing fatigue vulnerability of steel bridge members considering corrosion and truck traffic variation with time is proposed to evaluate the reduction of fatigue strength in steel bridge members. A fatigue limit state function including corrosion and traffic variation effect is established. The interaction between the average corrosion depth and the fatigue strength reduction factor is applied to the limit state function as the reduction term of strength. Three types of truck traffic change is modeled for representing real traffic change trend. Monte-Carlo simulation method is used for reliability analysis which provides the data to obtain fatigue vulnerability curves. The estimation method proposed was verified by comparing with the results of reference study and applying to the steel bridges in service.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.

Study on the flexural behavior of corroded built-up cold-formed thin-walled steel beams

  • Zhang, Zongxing;Xu, Shanhua;Li, Han;Li, Rou;Nie, Biao
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.353-369
    • /
    • 2020
  • Eight cold-formed thin-walled steel beams were performed to investigate the effect of corrosion damage on the flexural behavior of steel beams. The relationships between failure modes or load-displacement curves and corrosion degree of steel beams were investigated. A series of parametric analysis with more than forty finite element models were also performed with different corrosion degrees, types and locations. The results showed that the reduction of cross-section thickness as well as corrosion pits on the surface would lead to a decline in the stiffness and flexural capacity of steel beams, and gradually intensified with the corrosion degree. The yield load, ultimate load and critical buckling load of the corroded specimen IV-B46-4 decreased by 22.2%, 26% and 45%, respectively. The failure modes of steel beams changed from strength failure to stability failure or brittle fracture with the corrosion degree increasing. In addition, thickness damage and corrosion pits at different locations caused the degradation of flexural capacity, the worst of which was the thickness damage of compression zone. Finally, the method for calculating flexural capacity of corroded cold-formed thin-walled steel beams was also proposed based on experimental investigation and numerical analysis results.