• Title/Summary/Keyword: Damage class

Search Result 288, Processing Time 0.024 seconds

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

Fatigue Life Analysis of SA508 Gr. 1A Low-Alloy Steel under the Operating Conditions of Nuclear Power Plant (원자력발전소 운전환경에서 SA508 Gr. 1A 저합금강의 피로 수명 분석)

  • Lee, Yong Sung;Kim, Tae Soon;Lee, Jae Gon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Fatigue has been known as a major degradation mechanism of ASME class 1 components in nuclear power plants. Fatigue damage could be accelerated by combined interaction of several loads and environmental factors. However, the environmental effect is not explicitly addressed in the ASME S-N curve which is based on air at room temperature. Therefore many studies have been performed to understand the environmental effects on fatigue behavior of materials used in nuclear power plants. As a part of efforts, we performed low cycle fatigue tests under various environmental conditions and analyzed the environmental effects on the fatigue life of SA508 Gr. 1a low alloy steel by comparing with higuchi's model. Test results show that the fatigue life depends on water temperature, dissolved oxygen and strain rate. But strain rate over 0.4%/s has little effect on the fatigue life. To find the cause of different fatigue life with ANL's and higuchi's model, another test performed with different heat numbered and heat treated materials of SA508 Gr. 1a. On a metallurgical point of view, the material with bainite microstructure shows much longer fatigue life than that with ferrite/pearlite microstructure. And the characteristics of crack propagation as different microstructure seem to be the main cause of different fatigue life.

  • PDF

fiber Orientation Effects on the Acoustic Emission Characteristics of Class fiber-Reinforced Composite Materials (유리섬유강화 복합재의 AR특성에 대한 섬유배향 효과)

  • Kim, Jung-Hyun;Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for the unidirectional and satin-weave, continuous glass-fiber reinforced plastic(UD-GFRP and SW-GFRP) tensile specimens. Reflection and transmission optical microscopy was used for investigation of the damage zone of specimens. AE signals were classified as different types by using short time fourier transform(STFT) : AE signals with high intensity and high frequency band were due to fiber fracture, while weak AE signals with low frequency band were due to matrix and interfacial cracking. The feature in the rate of hit-events having high amplitudes showed a process of fiber breakages, which expressed the characteristic fracture processes of individual fiber-reinforced plastics with different fiber orientations and with different notching directions. As a consequence, the fracture behavior of the continuous GFRP could be monitored as nondestructive evaluation(NDE) through the AE technique.

A Study on the Industrial Accidents and Preventive Countermeasures (산업재해(産業災害)와 예방대책(豫防對策)에 관한 고찰(考察))

  • Lee, Hui-Chun
    • Korean Business Review
    • /
    • v.5
    • /
    • pp.215-240
    • /
    • 1992
  • The major purpose of this study is to find the problems that the statistics of industrial accidents showed and to prevent the preventive countermeasures for effective security management. An industrial accident is a disease resulting from exposure during employment to condition or substance detrimental to health or life. This is caused by the conditions of employment and is not projected by the man. This results generally from the comprehensive factors. The claiments of 1990 are 7,542,752 members and the economic deficit is up to 2,696,757 million won. Because of this severe damage, the preventive of the industrial accident is highly required. The way of preventive countermeasures could be presentation as follows. First, for securing the safety, precaution about the tools, machineries and working condition is needed from the time of installation. Second, a traing system for the managerial class the specialists or engineers should be established. Cultivation of the appropriate personnel and enhancement of technique for safety are prerequists for reduction of the industrial accidents. Third, the health checkup system must be improved. For the prevention of the occupational disease and good health of the workes, experts who knows workers health must be appointed. In conclusion, industrial accident is not unavoidable result of the advance of the industries but the result of the incapability of management that can not meet the requirement necessary for the prevention of industrial accident. Therefore, each corporation should be regard the above mention and make effective safety control that is free from the industrial accident. The implement of organizational safety programs, similar to the application of company health plan, involves shared administrative responsibilities among top executive line personnel, staff specialists, first line supervisors, and organizational employment.

  • PDF

PRELIMINARY STUDY OF NEUROSENSORY RECOVERY AFTER BSSRO (악교정 수술 후 발생하는 신경회복에 대한 연구 I)

  • Lee, Dong- Keun;Jo, I-Su;Min, Seung-Ki;Oh, Seung-Hwan;Jeong, Chang-Ju;Lee, Eun-Tak
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.2
    • /
    • pp.144-154
    • /
    • 2001
  • Dysfunction of the inferior alveolar nerve indicated by various degree of numbness of the lower lip and chin is one of the few drawbacks of mandibular osteotomy, especially Bilateral Sagittal Split Ramus Osteotomy(BSSRO) and genioplasty. Although it has been recorded throughout the history of this techniques, it is true etiology poorly understood. In this study, 22 consecutive patients under class III malocclusiion impression and undergoing orthognathic surgery(BSSRO only 11 case, BSSRO with genioplasty 11 case) were studied using 4 neurosensory test(static light touch, directional discrimination, two-point discrimination, pin pressure nociception) with post OP 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, 24 weeks, On control group, 10 members without trauma and nerve damage history, nerve test was accomplished. We concluded majority of patients return of sensation during post operative 24 weeks. Althought immediate nerve deficit are 92.2%, 97.2% 88.9% these are recovered to 25%, 35.72%, 10.71% at 24 weeks. Nerve recovery rate increased prominently between post 4 weeks and 8 weeks. There is no statistically difference about neurosensory deficit among the chin area. Neurosensory deficit more severe when the BSSRO with genioplasty group than the only BSSRO group. Immediate neurosensory deficit is larger left side than right side but after 6 months, there is no significantly difference between left side and right side. Static light touch and pin pressure nociception are more sensitive method of neurosensory deficit than two point discrimination.

  • PDF

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Prediction of Land-cover Change in the Gongju Areas using Fuzzy Logic and Geo-spatial Information (퍼지 논리와 지리공간정보를 이용한 공주지역 토지피복 변화 예측)

  • Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.387-402
    • /
    • 2005
  • In this study, we tried to predict the change of future land-cover and relationships between land-cover change and geo-spatial information in the Gongju area by using fuzzy logic operation. Quantitative evaluation of prediction models was carried out using a prediction rate curve using. Based on the analysis of correlations between the geo-spatial information and land-cover change, the class with the highest correlation was extracted. Fuzzy operations were used to predict land-cover change and determine the land-cover prediction maps that were the most suitable. It was predicted that in urban areas, the urban expansion of old and new towns would occur centering on the Gem-river, and that urbanization of areas along the interchange and national roads would also expand. Among agricultural areas, areas adjacent to national roads connected to small tributaries of the Gem-river and neighboring areas would likely experience changes. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the possibility of forest damage is very high. As a result of validation using the prediction rate curve, it was indicated that among fuzzy operators, the maximum fuzzy operator was the most suitable for analyzing land-cover change in urban and agricultural areas. Other fuzzy operators resulted in the similar prediction capabilities. However, in the prediction rate curve of integrated models for land-cover prediction in the forest areas, most fuzzy operators resulted in poorer prediction capabilities. Thus, it is necessary to apply new thematic maps or prediction models in connection with the effective prediction of changes in the forest areas.

Fatigue Safe Life Analysis of Helicopter Bearingless Rotor Hub Composite Flexbeam (헬리콥터 무베어링 로터 허브 복합재 유연보 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.561-568
    • /
    • 2013
  • After we designed Bearingless rotor hub system for 7,000lb class helicopter, flexbeam fatigue analysis was conducted for validation of requirement life time 8,000 hours. sectional structural analysis method applying elastic beam model was used. Fatigue analysis for two sections of flexbeam which were expected to weak to fatigue damage from result of static analysis was conducted. Extension, bending and torsion stiffness of flexbeam section shape was calculated using VABS for structure analysis. S-N curve of two composite material which composed flexbeam was generated using wohler equation. Load analysis of bearingless rotor system was conducted using CAMRAD II and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used flexbeam fatigue safe life analysis.

Investigating the Effect of Prior Damage on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames

  • Ronagh, Hamid Reza;Behnam, Behrouz
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.209-220
    • /
    • 2012
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings that have been partially damaged as a result of a prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels of two portal frames, after they are pushed to arrive at a certain level of displacement corresponding to the mentioned performance level. This investigation is followed by a fire analysis of the damaged frames, examining the time taken for the damaged frames to collapse. As a point of reference, a fire analysis is also performed for undamaged frames and before the occurrence of earthquake. The results indicate that while there is minor difference between the fire resistances of the fire-alone situation and the frames pushed to the IO level of performance, a notable difference is observed between the fire-alone analysis and the frames pushed to arrive at LS and CP levels of performance and exposed to PEF. The results also show that exposing only the beams to fire results in a higher decline of the fire resistance, compared to exposing only the columns to fire. Furthermore, the results show that the frames pushed to arrive at LS and CP levels of performance collapse in a global collapse mode laterally, whereas at the IO level of performance and fire-alone situation, the collapse mechanism is mostly local through the collapse of beams. Whilst the investigation is conducted for a certain class of portal frames, the results confirm the need for the incorporation of PEF into the process of analysis and design, and provide some quantitative measures on the level of associated effects.

Improvement of the Certification Model for Enhancing Information Security Management Efficiency for the Financial Sector (금융권 정보보호 관리 효율을 제고하기 위한 인증모형 개선방안)

  • Oh, Eun;Kim, Tae-Sung;Cho, Tae-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.541-550
    • /
    • 2016
  • Considering the results of the 3.20 Cyber Attack, leaks of personal information by card companies, and so on, convenience and efficiency cannot be guaranteed without security as a prerequisite. In addition, it is more likely that customers' interests seem to be interfered with in financial institutions than in any other industry. Therefore, when a security accident occurs, users may suffer mental damage and monetary loss, leading to class action, customer defection, loss of reputation, and falloff in international credibility, which all may have a significant effect on the business continuity of corporations. This study integrates the representative information security certification systems in order to improve the efficiency of information security management and demonstrate the necessity of information security management system certification for the financial sector. If the certification is needed, we would like to recommend the desirable development direction.