• Title/Summary/Keyword: Damage characteristics

Search Result 3,424, Processing Time 0.038 seconds

Analysis of Typhoon Storm Occurrence and Runoff Characteristics by Typhoon Tracks in Nakdong River Basin (낙동강유역의 태풍경로별 호우발생특성 및 유출특성 분석)

  • 한승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.64-73
    • /
    • 1996
  • When typhoon occurs, the meteorological conditions get worse and can cause a large damage from storm and flood . This damage, however, can be minimized if a precise analysis of the runoff characteristics by typhoon tracks is used in the flood contorl This paper aims at the analysis of storm occurrence and runoff characteristics by typhoon tracks in Nakdong river basin. Therefore, the data of 14 typhoons which invaded Nakdong river basin during the period from 1975 to 1991 were collected, analyzed, and studied. The major results of this study are as followings; 1) The frequency of the typhoon occurrence here in Korea was affected by the storms three times a year on the average. The highest-recorded frequency was during the months of July to September. 2) The survey of the track characteristics depending on the forms of the storm in the Nakdong river basin showed that typhoon storm advanced from the south of the basin to the north, while the frontal type storm was most likely to advanced from the west to the north. 3) Typhoon tracks are classified into three categories, 6 predictors with high correlation coefficient are finally selected, and stepwise multiple regression method are used to establish typhoon strom forecasting models. 4) The riview on the directions of progress of the storm made it clear that the storm moving downstream from upstream of the basin could develop into peak discharge for ca short time and lead to more flood damage than in any other direction.

  • PDF

Influence of non-Gaussian characteristics of wind load on fatigue damage of wind turbine

  • Zhu, Ying;Shuang, Miao
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.217-227
    • /
    • 2020
  • Based on translation models, both Gaussian and non-Gaussian wind fields are generated using spectral representation method for investigating the influence of non-Gaussian characteristics and directivity effect of wind load on fatigue damage of wind turbine. Using the blade aerodynamic model and multi-body dynamics, dynamic responses are calculated. Using linear damage accumulation theory and linear crack propagation theory, crack initiation life and crack propagation life are discussed with consideration of the joint probability density distribution of the wind direction and mean wind speed in detail. The result shows that non-Gaussian characteristics of wind load have less influence on fatigue life of wind turbine in the area with smaller annual mean wind speeds. Whereas, the influence becomes significant with the increase of the annual mean wind speed. When the annual mean wind speeds are 7 m/s and 9 m/s at hub height of 90 m, the crack initiation lives under softening non-Gaussian wind decrease by 10% compared with Gaussian wind fields or at higher hub height. The study indicates that the consideration of the influence of softening non-Gaussian characteristics of wind inflows can significantly decrease the fatigue life, and, if neglected, it can result in non-conservative fatigue life estimates for the areas with higher annual mean wind speeds.

Mechanical deterioration and thermal deformations of high-temperature-treated coal with evaluations by EMR

  • Biao Kong;Sixiang Zhu;Wenrui Zhang;Xiaolei Sun;Wei Lu;Yankun Ma
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.233-244
    • /
    • 2023
  • With the increasing amount of resources required by the society development, mining operations go deeper, which raises the requirements of studying the effects of temperature on the physical and mechanical properties of coal and adjacent rock. For now, these effects are yet to be fully revealed. In this paper, a mechanical-electromagnetic radiation (EMR) test system was established to understand the mechanical deterioration characteristics of coal by the effect of thermal treatment and its deformation and fracture characteristics under thermo-mechanical coupling conditions. The mechanical properties of high-temperature-treated coal were analyzed and recorded, based on which, reasons of coal mechanical deterioration as well as the damage parameters were obtained. Changes of the EMR time series under unconstrained conditions were further analyzed before characteristics of EMR signals under different damage conditions were obtained. The evolution process of thermal damage and deformation of coal was then analyzed through the frequency spectrum of EMR. In the end, based on the time-frequency variation characteristics of EMR, a method of determining combustion zones within the underground gasification area and combustion zones' stability level was proposed.

Damage detection in plate structures using frequency response function and 2D-PCA

  • Khoshnoudian, Faramarz;Bokaeian, Vahid
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.427-440
    • /
    • 2017
  • One of the suitable structural damage detection methods using vibrational characteristics are damage-index-based methods. In this study, a damage index for identifying damages in plate structures using frequency response function (FRF) data has been provided. One of the significant challenges of identifying the damages in plate structures is high number of degrees of freedom resulting in decreased damage identifying accuracy. On the other hand, FRF data are of high volume and this dramatically decreases the computing speed and increases the memory necessary to store the data, which makes the use of this method difficult. In this study, FRF data are compressed using two-dimensional principal component analysis (2D-PCA), and then converted into damage index vectors. The damage indices, each of which represents a specific condition of intact or damaged structures are stored in a database. After computing damage index of structure with unknown damage and using algorithm of lookup tables, the structural damage including the severity and location of the damage will be identified. In this study, damage detection accuracy using the proposed damage index in square-shaped structural plates with dimensions of 3, 7 and 10 meters and with boundary conditions of four simply supported edges (4S), three clamped edges (3C), and four clamped edges (4C) under various single and multiple-element damage scenarios have been studied. Furthermore, in order to model uncertainties of measurement, insensitivity of this method to noises in the data measured by applying values of 5, 10, 15 and 20 percent of normal Gaussian noise to FRF values is discussed.

Study on the Characteristics of Cavitation Erosion-Corrosion for Mild Steel ( 1 ) - Damage Behaviour of Vibration Cavitation Erosion-Corrosion - (연강의 캐비테이션 침식-부식 특성에 관한 연구 ( 1 ) - 진동 캐비네이션 침식-부식 손상 거동 -)

  • Lim, Un-Joh;Hwang, Jae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.413-422
    • /
    • 1995
  • Cavitation erosion-corrosion implies damage to materials due to the shock pressure or shock wave that results when bubbles form and collapse at a metal surface within a liquid. If the liquid is corrosive to the material, a condition typically encountered in industry, the component materials may suffer serious damage by a combination of mechanical and electrochemical attack. In this study, the mild steel(SS41) was tested by using the piezoelectric vibrator with 20kHz, 24$\mu$m to cavity generation apparatus. The damage behaviour of vibration cavitation erosion-corrosion and the environment characteristics were investigated in various solutions which are seawater, tap water and distilled water. The main results obtained are as follows; 1) The cavitation erosion-corrosion damage behaviour in the seawater increases to occur at the equal degree on the middle portion and the outside portion of specimen. The distilled water specimen, on other hand, occurs beginning on the outside portion across to the middle portion of specimen. 2) The cavitation erosion-corrosion damage in the tap water of low specific resistance more increases than that in the distilled water of high specific resistance at the initial testing time and more decreases than that in it by the CaCO sub(3) film with testing time. 3) Cavitation erosion-corrosion damage characteristic divides into four regions; incubation region, acceleration region, deceleration region and steady state region.

  • PDF

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Development of Estimation Functions for Strong Winds Damage Based on Regional Characteristics : Focused on Jeolla area (지역특성 기반의 강풍피해 예측함수 개발 : 전라지역을 중심으로)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 2020
  • Abnormal weather conditions have lately been occurring frequently due to the rapid economic development and global warming. Natural disasters classified as storm and flood damages such as heavy rain, typhoon, strong wind, high seas and heavy snow arouse large-scale human and material damages. To minimize damages, it is important to estimate the scale of damage before disasters occur. This study is intended to develop a strong wind damage estimation function to prepare for strong wind damage among various storm and flood disasters. The developed function reflects weather factors and regional characteristics based on the strong wind damage history found in the Natural Disaster Yearbook. When the function is applied to a system that collects real-time weather information, it can estimate the scale of damage in a short time. In addition, this function can be used as the grounds for disaster control policies of the national and local governments to minimize damages from strong wind.

Childbirth outcomes and perineal damage in women with natural childbirth in Korea: a retrospective chart review (자연주의 출산한 여성의 출산실태와 회음부 손상: 일개 자연주의 출산병원 의무기록을 중심으로)

  • Kim, Kyung Won;Lee, Sunhee
    • Women's Health Nursing
    • /
    • v.27 no.4
    • /
    • pp.379-387
    • /
    • 2021
  • Purpose: This study aimed to determine the actual state of childbirth in Korean women with natural childbirth and the degree of damage to the perineum during childbirth. Methods: This retrospective study analyzed the medical records of mothers who had natural childbirth at a hospital in Seoul, Korea in 2018. Data from 358 women with cephalic births at greater than 37 gestational weeks were analyzed. To determine natural childbirth characteristics and the degree of damage to the perineum, descriptive statistics were done. The difference in the degree of perineal injury according to obstetric characteristics was analyzed using independent t-test and one-way analysis of variance. Results: The mean age was 33.18±3.68 years, and 49.2% were primiparas, while 39% gave birth with a doula. The degree of perineal damage differed by age (F=9.15, p<.001), parity (t=19.13, p<.001), number of births in multiparity (F=3.68, p=.027), previous vaginal delivery in multiparity (F=3.00, p=.032) and birthing posture (F=7.44, p<.001). Having received therapeutic procedures (t=-4.62, p<.001), specifically fluid administration (t=-2.72, p=.007), oxygen supply (t=-2.76, p=.006) and epidural anesthesia (t=-2.77, p=.006) were statistically significant for perineal damage. There were no differences, however, by gestational period, doula use, water room use in labor, baby head circumference, or birth weight. Conclusion: Study findings suggest that support for older women, primiparas, and those who require therapeutic procedures may help to decrease the possibility of perineal damage during childbirth. As perineal damage was also associated with birthing posture, this should be considered when providing intrapartum nursing care.

Cable damage identification of cable-stayed bridge using multi-layer perceptron and graph neural network

  • Pham, Van-Thanh;Jang, Yun;Park, Jong-Woong;Kim, Dong-Joo;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.241-254
    • /
    • 2022
  • The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.

Damage Detection of Beam by Using the Reduction Ratio of Natural Frequency and the Neural Network (고유진동수의 감소율과 신경망을 이용한 보의 손상평가)

  • Ghoi, Hyuk;Lee, Gyu-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.153-165
    • /
    • 2006
  • A damage in a structure changes its dynamic characteristics such as natural frequencies, damping ratios, and the mode shapes. In this paper the effort has been spent in obtaining the characteristics of the reduction ratio in natural frequencies and the damage detection is performed using the reduction ratios. Most of the emphasis has been on using the artificial neural network to determine the location and the extent of the damage as well as the existence of the damage. The data for learning and verifying neural network were obtained from the analytical analysis. The data have no errors. Considering the real measurements the data including errors which are difference this study between other studies also were used for neural network. The position and extent of the damage can be detected using the neural network trained by reduction ratios of natural frequencies.