• 제목/요약/키워드: Damage Scale

검색결과 1,358건 처리시간 0.026초

Enhanced remote-sensing scale for wind damage assessment

  • Luo, Jianjun;Liang, Daan;Kafali, Cagdas;Li, Ruilong;Brown, Tanya M.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.321-337
    • /
    • 2014
  • This study has developed an Enhanced Remote-Sensing (ERS) scale to improve the accuracy and efficiency of using remote-sensing images of residential building to predict their damage conditions. The new scale, by incorporating multiple damage states observable on remote-sensing imagery, substantially reduces measurement errors and increases the amount of information retained. A ground damage survey was conducted six days after the Joplin EF 5 tornado in 2011. A total of 1,400 one- and two-family residences (FR12) were selected and their damage states were evaluated based on Degree of Damage (DOD) in the Enhanced Fujita (EF) scale. A subsequent remote-sensing survey was performed to rate damages with the ERS scale using high-resolution aerial imagery. Results from Ordinary Least Square regression indicate that ERS-derived damage states could reliably predict the ground level damage with 94% of variance in DOD explained by ERS. The superior performance is mainly because ERS extracts more information. The regression model developed can be used for future rapid assessment of tornado damages. In addition, this study provides strong empirical evidence for the effectiveness of the ERS scale and remote-sensing technology for assessment of damages from tornadoes and other wind events.

A model for damage analysis of concrete

  • Cao, Vui V.;Ronagh, Hamid R.
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.187-200
    • /
    • 2013
  • The damage level in structures (global scale), elements (intermediate scale) and sections (local scale) can be evaluated using a single parameter called the "Damage Index". Part of the damage attributed to the local scale relates to the damage sustained by the materials of which the section is made. This study investigates the damage of concrete subjected to monotonic compressive loading using four different damage models - one proposed here for the first time and three other well-known models. The analytical results show that the proposed model is promising yet simple and effective for evaluating the damage of concrete. The proposed damage model of concrete with its promising characteristics indicated, appears to be a useful tool in the damage assessment of structures made of concrete.

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.

Damage detection on a full-scale highway sign structure with a distributed wireless sensor network

  • Sun, Zhuoxiong;Krishnan, Sriram;Hackmann, Greg;Yan, Guirong;Dyke, Shirley J.;Lu, Chenyang;Irfanoglu, Ayhan
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.223-242
    • /
    • 2015
  • Wireless sensor networks (WSNs) have emerged as a novel solution to many of the challenges of structural health monitoring (SHM) in civil engineering structures. While research projects using WSNs are ongoing worldwide, implementations of WSNs on full-scale structures are limited. In this study, a WSN is deployed on a full-scale 17.3m-long, 11-bay highway sign support structure to investigate the ability to use vibration response data to detect damage induced in the structure. A multi-level damage detection strategy is employed for this structure: the Angle-between-String-and-Horizon (ASH) flexibility-based algorithm as the Level I and the Axial Strain (AS) flexibility-based algorithm as the Level II. For the proposed multi-level damage detection strategy, a coarse resolution Level I damage detection will be conducted first to detect the damaged region(s). Subsequently, a fine resolution Level II damage detection will be conducted in the damaged region(s) to locate the damaged element(s). Several damage cases are created on the full-scale highway sign support structure to validate the multi-level detection strategy. The multi-level damage detection strategy is shown to be successful in detecting damage in the structure in these cases.

액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구 (A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station)

  • 이수지;천영우;이익모;황용우
    • 한국가스학회지
    • /
    • 제21권5호
    • /
    • pp.56-63
    • /
    • 2017
  • 전세계적으로 수소 충전 스테이션 구축에 많은 투자와 지원을 하고 있는 실정이다. 그러나 수소는 폭발범위가 넓고 확산이 빠른 기체이다. 본 연구에서는 액화수소를 취급하는 소규모~대규모 충전스테이션을 대상으로, 사고시 발생하는 VCE로 인한 피해영향범위를 산출하고, 프로빗 모델을 통해 주변의 인적, 물적 피해를 예측하였다. 더불어, 벤트스택 끝단에서 발생 가능한 Jet fire를 시나리오로 선정하여 최적 높이를 설정하였다. 피해영향범위는 관심과압 6.9kPa을 기준으로 하여, 소규모 저장시설의 경우 8.24m, 중규모 14.10m, 대규모 22.38m이다. 폐출혈로 인한 인체 피해는 소규모와 중규모가 각각 50m, 대규모 100m였으며, 구조물 손상에 따른 피해는 소규모 200m, 중규모 300m 및 대규모 500m이다. 벤트스택의 최적높이는 소규모 4.7m, 중규모 8.8m 및 대규모 16.9m이다.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

염.탈색 및 펌 처리에 따른 모발의 손상과 웨이브 형상 (Hair Damage and Wave Shape according to Dyeing, Bleaching, Permanent Wave Treatment)

  • 권수애;노정애;박용
    • 한국생활과학회지
    • /
    • 제15권6호
    • /
    • pp.1083-1089
    • /
    • 2006
  • In this paper, the damage of hair and wave shape in process of the dyeing, bleaching, and permanent hair wave are simulated. The virgin hair that do not process the dyeing, bleaching, and permanent hair wave becomes stable in the scale type. On the other hand, the hair that deals with the dyeing, bleaching, and permanent hair wave is heavily damaged in the scale type. It is observed that the higher pH is decided, the higher the hair is damaged because the scale damage in the bleaching hair is more heavily damaged than the dyeing hair. In case of executing the permanent hair wave, the processing of the plaine rinsing becomes less in the scale damage of the hair and better in the wave form. Therefore, it is found that the processing of the plaine rinsing to improve the wave form and to prevent the hair damage is needed.

  • PDF

Reconstruction of a near-surface tornado wind field from observed building damage

  • Luo, Jianjun;Liang, Daan;Weiss, Christopher
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.389-404
    • /
    • 2015
  • In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

재해연보기반 풍랑피해예측함수 개발 : 서해연안지역 (Development of the Wind Wave Damage Estimation Functions based on Annual Disaster Reports : Focused on the Western Coastal Zone)

  • 추태호;조현민;심상보;박상진
    • 한국콘텐츠학회논문지
    • /
    • 제18권1호
    • /
    • pp.154-163
    • /
    • 2018
  • 우리나라뿐만 아니라 전 지구적으로 호우발생 빈도의 증가, 태풍이나 허리케인 세기의 강화 등에 따라 대규모 자연재해의 발생횟수와 피해액은 지속적으로 증가하는 추세이다. 태풍, 홍수, 호우, 강풍, 풍랑, 해일, 조수, 대설, 가뭄, 지진, 황사 등과 같은 자연재해는 발생지점과 규모를 예측하기 어려우며, 전조현상이 명확하게 나타나지 않아 대응에 많은 어려움이 존재한다. 그러나 자연재해의 피해규모를 예측할 수 있다면, 조기대응을 통해 피해를 저감할 수 있을 것이다. 따라서 본 연구에서는 국민안전처에서 발간하는 재해연보('91년~'15년)를 기반으로 서해연안지역의 풍랑피해함수를 개발하였다. 풍랑피해함수는 지역별, 시설별로 구분하여 개발하였으며, NRMSE는 1.94%~26.07%로 분석되었다. 개발된 식을 통해 피해규모를 예측하고, 그에 대한 적절한 대응이 이루어진다면, 피해를 저감할 수 있을 것으로 사료된다.