• Title/Summary/Keyword: Damage Ratio

Search Result 1,685, Processing Time 0.036 seconds

Climate Change-Induced Physical Risks' Impact on Korean Commercial Banks and Property Insurance Companies in the Long Run (기후변화의 위험이 시중은행과 손해보험에 장기적으로 미치는 영향)

  • Seiwan Kim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.107-121
    • /
    • 2024
  • In this study, we empirically analyzed the impact of physical risks due to climate change on the soundness and operational performance of the financial industry by combining economics and climatology. Particularly, unlike previous studies, we employed the Seasonal-Trend decomposition using LOESS (STL) method to extract trends of climate-related risk variables and economic-financial variables, conducting a two-stage empirical analysis. In the first stage estimation, we found that the delinquency rate and the Bank for International Settlement (BIS) ratio of commercial banks have significant negative effects on the damage caused by natural disasters, frequency of heavy rainfall, average temperature, and number of typhoons. On the other hand, for insurance companies, the damage from natural disasters, frequency of heavy rainfall, frequency of heavy snowfall, and annual average temperature have significant negative effects on return on assets (ROA) and the risk-based capital ratio (RBC). In the second stage estimation, based on the first stage results, we predicted the soundness and operational performance indicators of commercial banks and insurance companies until 2035. According to the forecast results, the delinquency rate of commercial banks is expected to increase steadily until 2035 under assumption that recent years' trend continues until 2035. It indicates that banks' managerial risk can be seriously worsened from climate change. Also the BIS ratio is expected to decrease which also indicates weakening safety buffer against climate risks over time. Additionally, the ROA of insurance companies is expected to decrease, followed by an increase in the RBC, and then a subsequent decrease.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Improved Damage Assessment Algorithm Using Limited Mode Shapes (제한된 모드형상을 이용한 개선된 손상평가 알고리즘)

  • 이종순;조효남;허정원;이성칠
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • This papers presents a practical damage detection algorithm based on damage index method that accurately assesses both the location and severity of the localized detriment in a bridge structure using only limited mode shapes. In the algorithm, the ratio of the modal vector sensitivity of an undamaged structure to that of a damaged structure is used as an indicator of damage. However, a difficulty arises when the damaged element is located at a node of mode where the amplitude of medal vector is close to zero, leading the singularity of the ratio (i.e., division-by-zero). This singularity problem is overcome by introducing a parameter denoted a sensitivity filter, a function of mode shape of the structure, in modal vector sensitivity. Using this concept, an improvement can be considerably achieved in the estimation of both degree of severity and location of damage. To verify the proposed algorithm, its numerical implementations are conducted for a simply supported beam and a 2-span continuous beam.

Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types (홍수피해유형별 홍수 위험 지수 적용성 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, the applicabilities of flood risk indices using FVI from IPCC, PSR method from OECD, and DPSIR method from EEA, were analyzed. Normalized values of daily maximum rainfall, hourly maximum rainfall, ten minute maximum rainfall, annual precipitation, total days of heavy rainfall (more than 80mm/day), density of population, density of asset, DEM, road statistics, river maintenance ratio, reservoir capacity, supply ratio of water supply and sewerage, and pumping capacity were constructed from 2000 to 2015 for nationwide 113 watersheds, to estimate flood risk indices. The estimated indices were compared to 4 different types of flood damage such as the number of casualties, damage area, the amount of flood damage, and flood frequency. The relationships between flood indices and different flood damage types demonstrated that the flood index using the PSR method shows better results for the amount of flood damage, the number of casualties and damage area, and the flood index using the DPSIR method shows better results for flood frequency.

The DNA Damage by Linoleic Acid Hydroperoxide (Linoleic acid과산화물의 DNA 손상작용)

  • KIM Seon-Bong;KANG Jin-Hoon;BYUN Han-Seok;KIM In-Soo;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.569-572
    • /
    • 1987
  • The DNA damage by linoleic acid hydroperoxide (LHPO) was investigated in a DNA-LHPO system at $37^{\circ}C$ to elucidate the DNA damage mechanism by lipid peroxidation products. LHPO shelved a great DNA damage with the increase of its concentrations. DNA was completely damaged in a LHPO-DNA(weight ratio, 2:3) system after incubation for 2 days. The degree of DNA ,damage by LHPO was greated than that of linoleic acid. In the quantitative analysis of DNA damage, the decreasing ratio of DNA content was $60\%$ in $84{\mu}g$ LHPO system incubated for 1 day compared to the control solution marked $30\%$. There were no participation of active oxygens on the DNA damage by LHPO.

  • PDF

Damage Detection of Beam by Using the Reduction Ratio of Natural Frequency and the Neural Network (고유진동수의 감소율과 신경망을 이용한 보의 손상평가)

  • Ghoi, Hyuk;Lee, Gyu-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.153-165
    • /
    • 2006
  • A damage in a structure changes its dynamic characteristics such as natural frequencies, damping ratios, and the mode shapes. In this paper the effort has been spent in obtaining the characteristics of the reduction ratio in natural frequencies and the damage detection is performed using the reduction ratios. Most of the emphasis has been on using the artificial neural network to determine the location and the extent of the damage as well as the existence of the damage. The data for learning and verifying neural network were obtained from the analytical analysis. The data have no errors. Considering the real measurements the data including errors which are difference this study between other studies also were used for neural network. The position and extent of the damage can be detected using the neural network trained by reduction ratios of natural frequencies.

Vibration-Based Damage Monitoring in Model Plate-Girder Bridges under Uncertain Temperature Conditions (불확실한 온도 조건하의 모형 강 판형교의 진동기반 손상 모니터링)

  • Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2008
  • A vibration-based damage-monitoring scheme is proposed that would generate an alarm showing the occurrence and location of damage under temperature-induced uncertainty conditions. Experiments on a model plate-girder bridge are described, for which a set of modal parameters was measured under uncertain temperature conditions. A damage-alarming model is formulated to statistically identify the occurrence of damage by recognizing the patterns of damage-driven changes in the natural frequencies of the test structure and by distinguishing temperature-induced off-limits. A damage index method based on the concept of modal strain energy is implemented in the test structure to predict the location of damage. In order to adjust for the temperature-induced changes in the natural frequencies that are used for damage detection, a set of empirical frequency correction formulas is analyzed from the relationship between the temperature and frequency ratio.

A Study on Beam-to-Column Connections with Plate Type Energy Absorption System (플레이트형 에너지 흡수장치를 가지는 기둥-보 접합부에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.103-114
    • /
    • 2013
  • Recently, there is a growing interest on sustainable connection system that makes it possible to reuse of main structural members by concentrating most of the damage in the frame caused by strong horizontal force, such as earthquake, to damper. In this study proposed a new type of damage-controlled connection system applying these concepts and analysed the major structural performance of the proposed system through the full-scale cyclic loading test and nonlinear finite element analyses. According to the result, it derived the optimal damper/beam strength ratio that minimize the damage of main members and satisfy at least the fully plastic moment of the beam. And it was to verify the possibility of applying as seismic connection details.

Elastic Analysis of a Cracked Ellipsoidal Inhomogeneity in an Infinite Body

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.709-719
    • /
    • 2001
  • In particle or short-fiber reinforced composites, cracking of reinforcements is a significant damage mode because the cracked reinforcements lose carrying capacity. This paper deals with elastic stress distributions and load carrying capacity of intact and cracked ellipsoidal inhomogeneities. Three dimensional finite element analysis has been carried out on intact and cracked ellipsoidal inhomogeneities in an infinite body under uniaxial tension and pure shear. For the intact inhomogeneity, as well known as Eshelbys solution, the stress distribution is uniform in the inhomogeneity and nonuniform in the surrounding matrix. On the other hand, for the cracked inhomogeneity, the stress in the region near the crack surface is considerably released and the stress distribution becomes more complex. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and cracked inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in to cracking damage. The load carrying capacity of the cracked inhomogeneity is expressed in terms of the average stress of the intact inhomogeneity and some coefficients. It is found that a cracked inhomogeneity with high aspect ratio still maintains higher load carrying capacity.

  • PDF