• Title/Summary/Keyword: Damage Propagation

Search Result 496, Processing Time 0.029 seconds

Damage Detection of Plate Using Long Continuous Sensor and Wave Propagation (연속형 센서와 웨이브 전파를 이용한 판 구조물의 손상감지)

  • Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.272-278
    • /
    • 2010
  • A method for damage detection in a plate structure is presented based on strain waves that are generated by impact or damage in the structure. Strain responses from continuous sensors, which are long ribbon-like sensors made from piezoceramic fibers or other materials, were used with a neural network technique to estimate the damage location. The continuous sensor uses only a small number of channels of data acquisition and can cover large areas of the structure. A grid type structural neural system composed of the continuous sensors was developed for effective damage localization in a plate structure. The ratios of maximum strains and arrival times of the maximum strains obtained from the continuous sensors were used as input data to a neural network. Simulated damage localizations on a plate were carried out and the identified damage locations agreed reasonably well with the exact damage locations.

3D finite element simulation of human proximal femoral fracture under quasi-static load

  • Hambli, Ridha
    • Advances in biomechanics and applications
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • In this paper, a simple and accurate finite element model coupled to quasi-brittle damage law able to describe the multiple cracks initiation and their progressive propagation is developed in order to predict the complete force-displacement curve and the fracture pattern of human proximal femur under quasi-static load. The motivation of this work was to propose a simple and practical FE model with a good compromise between complexity and accuracy of the simulation considering a limited number of model parameters that can predict proximal femur fracture more accurately and physically than the fracture criteria based models. Different damage laws for cortical and trabecular bone are proposed based on experimental results to describe the inelastic damage accumulation under the excessive load. When the damage parameter reaches its critical value inside an element of the mesh, its stiffness matrix is set to zero leading to the redistribution of the stress state in the vicinity of the fractured zone (crack initiation). Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. To illustrate the potential of the proposed approach, the left femur of a male (age 61) previously investigated by Keyak and Falkinstein, 2003 (Model B: male, age 61) was simulated till complete fracture under one-legged stance quasi-static load. The proposed finite element model leads to more realistic and precise results concerning the shape of the force-displacement curve (yielding and fracturing) and the profile of the fractured edge.

A study on damage propagation characteristics of granite in different damage levels (단계별 손상에 따른 화강암의 손상 발달특성 연구)

  • Park, Hyuck;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.273-284
    • /
    • 2002
  • The purpose of this study is to characterize damage propagation in granite which exists in South Korea. Coarse, medium and fine-grained granite specimens were sampled respectively In order to perform this study, elastic wave velocity test and permeability test were carried out to estimate the physical specificities of specimens before and after damage. Cellulose acetate film duplication method was used to select only cracks from cross section and to make these visible. Using dark-field illumination, approach photographing technique was used to get more distinct photographs of cracks from acetate peel. Computer programs named Photoshop were used to describe cracks. After damage, coarse and medium-grained granite had lower elastic wane velocity, higher permeability, more cracks and more distinct shear fractures than fine-grained granite.

A Probabilistic Model of Damage Propagation based on the Markov Process (마코프 프로세스에 기반한 확률적 피해 파급 모델)

  • Kim Young-Gab;Baek Young-Kyo;In Hoh-Peter;Baik Doo-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.524-535
    • /
    • 2006
  • With rapid development of Internet technology, business management in an organization or an enterprise depends on Internet-based technology for the most part. Furthermore, as dependency and cohesiveness of network in the communication facilities are increasing, cyber attacks have been increased against vulnerable resource in the information system. Hence, to protect private information and computer resource, research for damage propagation is required in this situation. However the proposed traditional models present just mechanism for risk management, or are able to be applied to the specified threats such as virus or worm. Therefore, we propose the probabilistic model of damage propagation based on the Markov process, which can be applied to diverse threats in the information systems. Using the proposed model in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager (초음파전파영상화 시스템을 이용한 필라멘트 와인딩 복합재 수소 연료 탱크의 손상 가시화)

  • Lee, Jung-Ryul;Jeong, Hyomi;Chung, Truong Thanh;Shin, Hejin;Park, Jaeyoon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.143-147
    • /
    • 2015
  • This paper proposes laser ultrasonic technique for the impact damage inspection of hydrogen fuel tank and proves that the impact damage can be visualized using an ultrasonic wave propagation imager with an easy detachable sensor head as an impact damage inspection tool for hydrogen fuel tanks. Also the performances of the proposed ultrasonic propagation imager support it can be implemented in real-world technology when the hydrogen car becomes popular.

Damage propagation for aircraft structural analysis of composite materials

  • Hung, C.C.;Nguyen, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.149-167
    • /
    • 2022
  • A Modified fuzzy mechanical control of large-scale multiple time delayed dynamic systems in states is considered in this paper. To do this, at the first level, a two-step strategy is proposed to divide a large system into several interconnected subsystems. And we focus on the damage propagation for aircraft structural analysis of composite materials. As a modified fuzzy control command, the next was received as feedback theory based on the energetic function and the LMI optimal stability criteria which allow researchers to solve this problem and have the whole system in asymptotically stability. And we focus on the results which shows the high effective by the proposed theory utilized for damage propagation for aircraft structural analysis of composite materials.

Active damage localization technique based on energy propagation of Lamb waves

  • Wang, Lei;Yuan, F.G.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • An active damage detection technique is introduced to locate damage in an isotropic plate using Lamb waves. This technique uses a time-domain energy model of Lamb waves in plates that the wave amplitude inversely decays with the propagation distance along a ray direction. Accordingly the damage localization is formulated as a least-squares problem to minimize an error function between the model and the measured data. An active sensing system with integrated actuators/sensors is controlled to excite/receive $A_0$ mode of Lamb waves in the plate. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the undamaged plate from the recorded signal of the damaged plate. In the experimental study, after collecting the scattered wave signals, a discrete wavelet transform (DWT) is employed to extract the first scattered wave pack from the damage, then an iterative method is derived to solve the least-squares problem for locating the damage. Since this method does not rely on time-of-flight but wave energy measurement, it is more robust, reliable, and noise-tolerant. Both numerical and experimental examples are performed to verify the efficiency and accuracy of the method, and the results demonstrate that the estimated damage position stably converges to the targeted damage.

The Prediction of Fatigue Damage for Pressure Vessel Materials using Shear Horizontal Ultrasonic Wave (SH(shear horizontal) 초음파를 이용한 압력용기용 재료의 피로손상 예측)

  • Kang, Yong-Ho;Chung, Yong-Keun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.90-96
    • /
    • 2009
  • Ultrasonic method using SH(shear horizontal) wave has been developed to determine the surface damage in fatigued material. Fatigue damages based on propagation energy were analyzed by multi-regression analysis in interrupted fatigue test specimen including CrMoV and 12Cr alloy steel. From the test results, as the fatigue damage increased the propagation time of the launched waves increased and amplitude of wavelet decreased. Also, analysis for the waveform modulation showed a reliable estimation, with confidence limit of 97% for 12Cr steel and 95% for CrMoV steel, respectively. Therefore, It is thought that SH ultrasonic wave technique can be applied to determine fatigue damage of in-service component nondestructively.

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation (굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단)

  • Park, Jeongwon;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.