• 제목/요약/키워드: Damage Localization

검색결과 170건 처리시간 0.028초

Harnessing sparsity in lamb wave-based damage detection for beams

  • Sen, Debarshi;Nagarajaiah, Satish;Gopalakrishnan, S.
    • Structural Monitoring and Maintenance
    • /
    • 제4권4호
    • /
    • pp.381-396
    • /
    • 2017
  • Structural health monitoring (SHM) is a necessity for reliable and efficient functioning of engineering systems. Damage detection (DD) is a crucial component of any SHM system. Lamb waves are a popular means to DD owing to their sensitivity to small damages over a substantial length. This typically involves an active sensing paradigm in a pitch-catch setting, that involves two piezo-sensors, a transmitter and a receiver. In this paper, we propose a data-intensive DD approach for beam structures using high frequency signals acquired from beams in a pitch-catch setting. The key idea is to develop a statistical learning-based approach, that harnesses the inherent sparsity in the problem. The proposed approach performs damage detection, localization in beams. In addition, quantification is possible too with prior calibration. We demonstrate numerically that the proposed approach achieves 100% accuracy in detection and localization even with a signal to noise ratio of 25 dB.

A new formulation of cracking in concrete structures based on lumped damage mechanics

  • Daniel V.C. Teles;Rafael N. Cunha;Ricardo A. Picon;David L.N.F. Amorim;Yongtao Bai;Sergio P.B. Proenca;Julio Florez-Lopez
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.451-462
    • /
    • 2023
  • Lumped Damage Mechanics (LDM) is a theory proposed in the late eighties, which assumes that structural collapse may be analyzed as a two-phase phenomenon. In the first (pre-localization) stage, energy dissipation is a continuous process and it may be modelled by means of the classic versions of the theory of plasticity or Continuum Damage Mechanics (CDM). The second, post-localization, phase can be modelled assuming that energy dissipation is lumped in zones of zero volume: inelastic hinges, hinge lines or localization surfaces. This paper proposes a new LDM formulation for cracking in concrete structures in tension. It also describes its numerical implementation in conventional finite element programs. The results of three numerical simulations of experimental tests reported in the literature are presented. They correspond to plain and fiber-reinforced concrete specimens. A fourth simulation describes also the experimental results of a new test using the digital image correlation technique. These numerical simulations are also compared with the ones obtained using conventional Cohesive Fracture Mechanics (CFM). It is then shown that LDM conserves the advantages of both, CDM and CFM, while overcoming their drawbacks.

스테인리스강 프로펠러축의 가공에 따른 재질특성에 관한 연구 (Properties of the material on stainless steel propeller shaft with the weld working)

  • 손영태;정광교;이명훈
    • 선박안전
    • /
    • 통권24호
    • /
    • pp.4-20
    • /
    • 2008
  • Stainless steel 304 or stainless steel 630 types using propeller shaft of a small ship or a FRP fishing boat generally restrain localization corrosion and abrasion damage occurrence to shaft bearing or grand packing contact. In general, the residual stress which remains after welding or heat treatment in material can cause the stress concentration or localization corrosion. In case of small ship, stainless steel such as STS304 has long been used for propeller shaft. Meanwhile, crew of small ship tend to reuse damaged propeller shaft after repair by welding and performing heat treatment to save cost. However, it was found that reused propeller shaft by repair often caused troubles in ship's operation. In this study, the basic guideline for maintenance and treatment of propeller shaft are investigated. From the results of investigation, remarkable deterioration of the material properties and corrosion resistance on the welded work part was observed.

  • PDF

콘크리트 변형률국소화 모형 및 해석 (Modeling and Analysis of Strain Localization in Concrete)

  • 송하원;김인순;나웅진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.375-382
    • /
    • 1997
  • In this paper, a unified micromechanics-based model which can be applied to both tensile and compressive member of concrete is suggested and to the analysis of the strain-localization in concrete. From the comparison of the analysis results obtained from different size of concrete members with experimental data, it id shown that the model in this paper can be applied to the analysis of the strain localization concrete. For the finite element analysis of the strain-localization in concrete, the localized zone in concrete under strain localization is modeled as ad plastic model which can consider nonlinear strain softening and the non-localized zone is modeled as a nonlinear elastic-damage model. Using developed finite element analysis program. strain localization behaviors under compressive force for the different sizes of concrete having different sizes of the localized zone are simulated.

  • PDF

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계 (Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node)

  • 홍동수;김정태
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.81-89
    • /
    • 2012
  • 본 연구에서는 무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계를 제안하였다. 이 같은 연구목표를 위해, 다음과 같은 연구를 수행하였다. 먼저, 무선 가속도 센서노드의 하드웨어 구성 및 내장된 작동 소프트웨어를 제시하였다. 다음으로, 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계를 제시하였다. 손상 모니터링 체계는 가속도 응답특성 분석을 통해 전역적 손상발생 경보 및 손상위치 추정을 수행한다. 전역적 손상발생 경보는 파워스펙트럼밀도의 상관계수를 적용하였다. 손상위치 추정은 고유 진동수기반 손상검색 기법과 모드형상기반 손상검색 기법을 적용하였다. 마지막으로, 모형 강 거더의 볼트연결 부재 손상을 식별하기 위한 진동기반 손상 모니터링 체계의 적용성을 검증하였다.

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Numerical evaluation for vibration-based damage detection in wind turbine tower structure

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.657-675
    • /
    • 2015
  • In this study, the feasibility of vibration-based damage detection methods for the wind turbine tower (WTT) structure is evaluated. First, a frequency-based damage detection (FBDD) is outlined. A damage-localization algorithm is visited to locate damage from changes in natural frequencies. Second, a mode-shape-based damage detection (MBDD) method is outlined. A damage index algorithm is utilized to localize damage from estimating changes in modal strain energies. Third, a finite element (FE) model based on a real WTT is established by using commercial software, Midas FEA. Several damage scenarios are numerically simulated in the FE model of the WTT. Finally, both FBDD and MBDD methods are employed to identify the damage scenarios simulated in the WTT. Damage regions are chosen close to the bolt connection of WTT segments; from there, the stiffness of damage elements are reduced.

내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델 (Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model)

  • 윤수진;이상연;박동창;윤현걸
    • 한국추진공학회지
    • /
    • 제15권5호
    • /
    • pp.82-88
    • /
    • 2011
  • 본 논문에서는 유한요소해석을 통해 연소시험 과정 중 발생한 내열 구조품의 파단현상이 분석되었다. 구조 불안정성은 소성변형으로 인한 것으로 이는 급격한 열하중의 변화에서 비롯된 것이다. 한편 소성변형 국부화 현상을 이해하기 위해 구성방정식에 연속체 파손변수가 포함되었으며 또한 Armstrong-Frederick과 Phillips 경화식을 이용, 이중후방응력 구성방정식이 제안되었다. 따라서 본 모델은 광범위한 소성변형거동을 해석할 수 있는 토대를 마련하였다. 수치해석을 통해 소성변형 집중 현상은 지배적인 후방응력의 전개에 의존하는 것으로 나타났다. 또한 물체 내에서의 파손 현상은 소성변형 집중을 가속화하는 것으로 밝혀졌다.

내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델 (Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model)

  • 윤수진;이상연;박동창;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.272-278
    • /
    • 2011
  • 본 논문에서는 유한요소해석을 통해 연소시험 과정 중 발생한 내열 구조품의 파단현상이 분석되었다. 구조 불안정성은 소성변형으로 인한 것으로 이는 급격한 열하중의 변화에서 비롯된 것이다. 한편 소성변형 국부화 현상을 이해하기 위해 Armstrong-Frederick과 Phillips 경화식을 이용, 이중후방응력 구성방정식이 제안되었으며, 또한 본 모델은 연속체 파손역학과 조합되었으며 광범위한 소성변형거동을 보일 수 있다. 수치해석을 통해 소성변형 집중 현상은 지배적인 후방응력의 전개에 의존하는 것으로 나타났다. 또한 물체 내에서의 파손 현상은 소성변형 집중을 가속화하는 것으로 밝혀졌다.

  • PDF