• Title/Summary/Keyword: Dam reservoirs

Search Result 193, Processing Time 0.027 seconds

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

Analysis of Morphological Characteristics of Farm Dams in Korea (한국 농업용 저수지의 형태학적 특성 분석)

  • Yoo, Chul-Sang;Park, Hyun-Keun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.940-954
    • /
    • 2007
  • This study was to analyze a total of 18,068 farm reservoirs in Korea with their basic measures, and estimate their average characteristics. These characteristics have also been compared with those of foreign countries. Histograms of seven measures(approval area, beneficial area, watershed area, effective storage, full water area, dam length, and dam height) of reservoirs are made to characterize their distributions and to apply the Pareto analysis with the power law to evaluate their inequalities. The histogram analysis shows that the measures of dam(channel cross-section) characteristics follow the log-normal distributions, on the other hand, those of the basin characteristics the exponential-type distributions. Pareto analysis was done for the five measures of having exponential distribution. The Pareto exponents estimated are 0.38 for the approval area, 0.42 for the beneficial area, -0.19 for the effective storage, 0.30 for the watershed area, and 0.22 for the full water area, so the inequality of the beneficial area is the highest and that of the effective storage is the lowest. Analysis of morphology index versus watershed area shows that most reservoirs are categorized into deep or normal ones. These characteristics are also found to be similar to those of foreign countries.

Investigation on Design Aspects of the Constructed Wetlands for Agricultural Reservoirs Treatment in Korea (농업용 저수지 수질개선을 위한 국내 인공습지 설계 및 시공실태 조사)

  • Kim, Youngchul;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • To improve the water quality of agricultural reservoirs, constructed wetlands are applied in many places. These are technologies that establish ecosystems and important design factors include water depth distribution, inflow and outflow, water flow distribution, hydraulic residence time, water quality treatment efficiency, aspect ratio, and the distribution of open water and covered water surfaces. For high efficiency during the operation of a constructed wetland, the design needs to be optimized and this requires consideration of the different types and length of the intake dam as well as the type and connection of wetland cells. Therefore, this study was conducted to investigate and suggest factors that needs to be considered during the design and for efficient operation measures through field surveys of 23 constructed wetlands that have been established and operated in agricultural reservoirs. Results of the field investigation shows that several sites were being operated improperly due to the malfunctioning or failure of the water level sensors, sedimentation in the intake dam, and clogging of the mechanical sluice frames. In addition, it was found that as the length of the inlet channel increases, the ecological disconnection between the intake dam upstream and the wetland outlet downstream also increases and was identified as a problem. Most of the wetlands are composed of 2 to 5 cells which can result to poor hydraulic efficiency and difficulty in management if they are too large. Moreover, it was found that the flow through a small wetland can be inadequate when there are too many cells due to excessive amounts of headloss.

Estimation of Local Change in Hydrometeorologic Environment due to Dam Construction (댐 건설로 인한 국지 수문기상환경의 변화 추정)

  • Yoo, Chul-Sang;Ahn, Jae-Hyun;Kang, Sung-Kyu;Kim, Kee-Wook;Yoon, Yong-Nam
    • Journal of Environmental Policy
    • /
    • v.4 no.1
    • /
    • pp.21-38
    • /
    • 2005
  • In this study, a model for analyzing the spatial effect of large dam reservoirs on local hydrometeorology was developed, and then actually applied to the Seomjingang Dam, Soyanggang Dam, Andong Dam, and Chungju Dam. The application included the analysis of land use using the satellite images to derive the change in albedo before and after the dam construction. Summarizing the modeling procedure and its application results are as follows. (1) The change in albedo was found to be closely related with the size of the dam, also the spatial limit of albedo change were estimated to be 10-20km for the Seomjingang Dam, 40km for the Soyanggang Dam, 20-30km for the Andong Dam, and 50km for the Chungju Dam. (2) The change in the coefficient of recycle (ratio of internal supply of moisture to the total available moisture) was found to be big within the narrow boundary of the. dam, but become smaller as the boundary becomes larger. (3) The correlation between the albedo and. coefficient of recycle was found high. Thus, it could be concluded that the change in land use due to dam construction has much effect on the moisture circulation structure. (4) The spatial range of hydrometeorogic effect was compared with the water surface area of dam reservoir. The result showed that the spatial range sensitively increased up to $50km^2$ of water surface area.

  • PDF

Effects of Hydrogeomorphology and Watershed Land Cover on Water Quality in Korean Reservoirs (우리나라 저수지 수질에 미치는 수문지형 및 유역 토지피복의 영향)

  • Cho, Hyunsuk;Cho, Hyung-Jin;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • In order to study the water quality status and its causal environmental factors, the water quality variables of chemical oxygen demand (COD), chlorophyll a (Chl a), Total phosphorus (TP), and total nitrogen (TN), the hydrogeomorphologic variables of water level fluctuation, total water storage, dam elevation, watershed area, and shoreline development index, and the land cover variables of forest, agricultural area, and urbanized area in the watershed were investigated in total 73 reservoirs with various operational purposes, water level fluctuation and geographical distribution in South Korea. The water quality was more eutrophic in the reservoirs of the more urbanized and agricultural area in the watershed, the low altitude, the narrow water level fluctuation, the narrowed watershed area, and the more circular shape. In terms of the purposes of reservoir operation, the reservoirs for agricultural irrigation were more eutrophic than the reservoirs for flood control. The results of the variable selection and path analysis showed that COD determined by Chl a and TP was directly affected by water level fluctuation and the shoreline development of the reservoirs. TP was directly affected by the urbanized area of the watershed which was related to the elevation of the reservoir. TP was also influenced by the water level fluctuation and the shoreline development. In conclusion, the eutrophication of the reservoirs in Korea would be influenced by the land use of the watershed, hydrological and geographical characteristics of the reservoir, water level fluctuation by the anthropogenic management according to the reservoir operation purpose, and the location of the reservoirs.

Application of Geophysical Exploration Methods to Seepage Bone Investigation of Dam Structures (제방누수조사에의 물리탐사기법의 활용(쌍극자배열 전기비저항탐사와 SP탐사를 중심으로))

  • Won Jong-Geun;Song Sung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.240-257
    • /
    • 1999
  • More than 16 percent of the total 18,032 reservoirs over the country were reported to have leakage problems and need to be improved. Recently, a great deal of progress was made in geophysical survey techniques, particularly in electrical resistivity, and the techniques are used for variety of Purposes in groundwater and dam management due to its economical advantages. This document describes the re-evaluation of existing resistivity data including newly surveyed data, mapping of modeled value in 2-D analysis to locate seepage pathways, This contains also discussion results of more than eighteen years of professional experiences in the field of dam efficiency improvement. In comparison of surface resistivity data with several soil analysis data in laboratory, it is evident that the surface resistivity value shows a qualitative proportionality with the sand contents of the filling materials in earth dam. The result from the study also indicates that the SP method in subsurface investigation is effective to detect seepage in earth filled dam as well as piping through rock/earthfill dike.

  • PDF

Impact of Non-point Source Runoff on Water Resource Quality according to Water-Level Changes (수위 변화에 따른 비점오염의 상수원 수질 영향 분석)

  • Choi, Mi-Jin;Lee, Sang-Hyeon
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1045-1053
    • /
    • 2015
  • This study evaluated the effect of water level of water resources on water quality in Ulsan. Two reservoirs, Sayeon Dam and Hoeya Dam, were selected and water quality of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were analyzed from 2012 to 2014. And the characteristics of precipitation were also analyzed for 70 years (1945~2014) because runoff of non-point pollutant was strongly affected by precipitation. As a result, water deterioration of Sayeon Dam and Hoeya Dam were affected in accordance with lowering water level. For example, the concentrations of COD and TN was negatively correlated with the water level when the water level of Sayeon Dam was gradually decreased in 2013. The TN concentration was increased to 1.432 mg/L from 0.875 mg/L while the lowest water level of Sayeon Dam was recorded 45 m in 2014. Additionally the concentration of COD and TN was sensitively increased with 0.213 mg/L/m and 0.058 mg/L/m on account of non-point pollutant runoff. It is indicated that hereafter a control of non-point pollutant runoff is the critical factors to maintain water resources because the contribution of non-point pollutant is expected to increase due to the frequent heavy rain events. Therefore, it is necessary to map out a specific plan for non-point pollutant control based on analyses of runoff characteristics, water pollution sources and reduction plans in water pollutants and to establish a water modelling and database system as a preventive action plan.

EVAPORATION DATA STOCHASTIC GENERATION FOR KING FAHAD DAM LAKE IN BISHAH, SAUDI ARABIA

  • Abdulmohsen A. Al-Shaikh
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.209-218
    • /
    • 2001
  • Generation of evaporation data generally assists in planning, operation, and management of reservoirs and other water works. Annual and monthly evaporation series were generated for King Fahad Dam Lake in Bishah, Saudi Arabia. Data was gathered for period of 22 years. Tests of homogeneity and normality were conducted and results showed that data was homogeneous and normally distributed. For generating annual series, an Autoregressive first order model AR(1) was used and for monthly evaporation series method of fragments was used. Fifty replicates for annual series, and fifty replicates for each month series, each with 22 values length, were generated. Performance of the models was evaluated by comparing the statistical parameters of the generated series with those of the historical data. Annual and monthly models were found to be satisfactory in preserving the statistical parameters of the historical series. About 89% of the tested values of the considered parameters were within the assigned confidence limits

  • PDF

A Study on the Management Method of Agricultural reservoir Using RCP Scenario (RCP 시나리오 분석을 통한 농업용 저수지 관리방안에 관한 연구)

  • Choo, Yeon Moon;Won, Chang Hee;Kim, Seong Ryul;Gwon, Chang Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • A reservoir is defined as an artificial facility that stores and controls water during floods and droughts. Korea has constructed and managed reservoirs all over the country to benefit farming communities. The importance of reservoirs has decreased gradually due to urbanization and the spread of tap water, but the importance of water is increasing because of the recent shortage of water and the resulting rise in the price of water resources. Therefore, this study suggests countermeasures through an analysis of the used threshold for agricultural reservoirs. To this end, the forecast of rainfall up to 2100 was first analyzed using flood estimates and RCP scenarios through rainwater data collection. The increase in the RCP 8.5 scenario, the largest increase in the probability rainfall, was calculated by adding it to the current probability rainfall, and it was predicted that the marginal height of Odong Dam would reach its limit in 2028. Therefore, as a countermeasure against this, the measures to secure effective water storage were suggested through measures, such as lowering the height of Yeosu and installing movable beams. Overall, it is expected that effective management of the reservoirs used for agriculture will be possible in the future.

Empirical Relations of Nutrients, N : P Ratios, and Chlorophyll in the Drinking Water Supplying Dam and Agricultural Reservoirs

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.512-518
    • /
    • 2008
  • This study were to evaluate trophic conditions, N : P ratios, and empirical relations of chlorophyll (CHL) systematically using TN, TP, and CHL values in agricultural reservoirs and drinking water supplying dams. During the study, nutrients and CHL varied depending on seasonal conditions and types of the reservoirs, but most reservoirs were diagnozed as eutrophic to hypertrophic. Mass ratios of TN : TP averaged 93.1 (range: $0.68{\sim}1342$) and about 96.6 % of the total observations (n=516) was > 17 in the N : P ratios. This result suggests that P was a potential factor limiting algal growth in the entire reservoir. Thus, TN : TP ratios were a function of phosphorus rather than nitrogen. Regression analysis of log-transformed N : P ratios against TP in DWDRs and ARs showed that ratios were linearly declined with an increase of TP ($R^2$>0.66; p<0.001). Seasonal mean CHL was minimum ($4.3{\mu}g\;L^{-1}$, range: $0.1{\sim}39.7{\mu}g\;L^{-1}$) in premonsoon, and was similar between the monsoon and postmonsoon. In contrast, one of the tremendous features was that values of CHL was greater in the ARs than DWDRs. Thus, the spatial and temporal patterns in CHL were similar to those of TP but not TN. Empirical models of CHL-TP showed that CHL variation could explain average 15.3% and 11.3% in DWDRs and ARs, respectively. Seasonal analysis of empirical models showed that CHL-TP relations were stronger in postmonsoon than those of premonsoon and monsoon.