• 제목/요약/키워드: Dam and weir release

검색결과 3건 처리시간 0.018초

SWAT을 이용한 낙동강유역의 보 개방에 따른 하천유량 및 수질 거동 분석 (Evaluation of stream flow and water quality behavior by weir operation in Nakdong river basin using SWAT)

  • 이지완;정충길;우소영;김성준
    • 한국수자원학회논문집
    • /
    • 제52권5호
    • /
    • pp.349-360
    • /
    • 2019
  • 본 연구의 목적은 낙동강유역($23,609.3km^2$) 내 댐-보 연계운영 평가를 위해 SWAT (Soil and Water Assessment Tool)을 이용하여 댐보 운영 시나리오에 따른 하천 유량 수질 거동을 평가하는 것이다. 댐-보 방류시나리오는 댐-보 동시방류(시나리오 1), 보 동시방류(시나리오 2), 상류 보에서부터 1개월 간격의 순차방류(시나리오 3)로 모의되었다. 평가에 앞서 SWAT은 11년(2005-2015) 동안 5개의 다목적댐(안동댐, 임하댐, 합천댐, 남감댐, 밀양댐)과 7개의 다기능보(상주보, 구미보, 칠곡보, 강정보, 달성보, 합천보, 함안보) 및 6개의 수질관측지점(안동4, 상주2, 왜관, 합천, 남강, 물금)에 대하여 검보정 되었다. 유입량 및 저수량 검 보정결과 $R^2$는 0.68~0.90, NSE는 0.56~0.79, RMSE는 0.94~1.74 mm/day 였으며, PBIAS는 -7.52~18.08%로 분석되었고,. 수질 $R^2$는 SS는 0.64~0.79, T-N는 0.51~0.74, T-P는 0.53~0.72의 상관성을 나타었다. 댐-보 연계운영 평가를 위해 환경부에서 제시한 연계운영 시나리오 중 3개의 시나리오를 선택하여 모의하였으며, 시나리오에 따른 수문 수질 거동을 분석하였다. 분석결과 시나리오 2 에 비해 시나리오 1과 3은 연계운영 종료 이후 3개월 이전에는 수질 (T-N, T-P)개선 효과가 나타났지만, 3개월 이후로는 시나리오 2에 비해 수질이 나빠진 것으로 나타났다.

배사구 유입부 흐름 및 하상변동 수치모의를 위한 매개변수 검정 및 민감도 분석에 관한 연구 (Parameter Calibration and Sensitivity Analysis for Numerical Modeling of Flow and Bed Changes near the Opening Gate for Sediment Release)

  • 장은경;임종철;지운;여운광
    • 한국환경과학회지
    • /
    • 제20권9호
    • /
    • pp.1151-1163
    • /
    • 2011
  • The bed change analysis near the opening gate of a dam or weir to release deposited sediments have been conducted mostly using the numerical models. However, the use of unverified input parameters in the numerical model is able to produce the different results with natural and real conditions. Also, the bed changes near the opening gate of a dam or weir calculated with a numerical model could be varied depending on the geometry extent included the downstream area with supercritical flow in the model. In addition, the different time steps could provide different results in the bed change calculation, even though other conditions such as input parameters, geometries, and total simulation time were same. Therefore, in this study, hydraulic experiments were performed to validate the eddy viscosity coefficient which is the one of important input parameters in the RMA2 model and relevant to variation of simulation results. The bed changes were calculated using the SED2D model based on flow results calculated in the RMA2 model with the verified and selected eddy viscosity coefficient and also compared with experimental results. The bed changes near the opening gate were underestimated in the numerical model comparing with experimental results except only the numerical case without the modeling section of sediment release pipe and downstream area where the supercritical flow was produced. For the simulation of minimum time steps, different shapes of scour hole were produced in numerical and physical modeling.

실시간 낙동강 흐름 예측을 위한 유역 및 수체모델 결합 적용 연구 (A Study on the Operational Forecasting of the Nakdong River Flow with a Combined Watershed and Waterbody Model)

  • 나은혜;신창민;박란주;김덕길;김경현
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.16-24
    • /
    • 2014
  • A combined watershed and receiving waterbody model was developed for operational water flow forecasting of the Nakdong river. The Hydrological Simulation Program Fortran (HSPF) was used for simulating the flow rates at major tributaries. To simulate the flow dynamics in the main stream, a three-dimensional hydrodynamic model, EFDC was used with the inputs derived from the HSPF simulation. The combined models were calibrated and verified using the data measured under different hydrometeological and hydraulic conditions. The model results were generally in good agreement with the field measurements in both calibration and verification. The 7-days forecasting performance of water flows in the Nakdong river was satisfying compared with model calibration results. The forecasting results suggested that the water flow forecasting errors were primarily attributed to the uncertainties of the models, numerical weather prediction, and water release at the hydraulic structures such as upstream dams and weirs. From the results, it is concluded that the combined watershed-waterbody model could successfully simulate the water flows in the Nakdong river. Also, it is suggested that integrating real-time data and information of dam/weir operation plans into model simulation would be essential to improve forecasting reliability.