• Title/Summary/Keyword: Dam Stability

Search Result 193, Processing Time 0.029 seconds

Nonlinear analysis of stability of rock wedges in the abutments of an arch dam due to seismic loading

  • Mostafaei, Hasan;Behnamfar, Farhad;Alembagheri, Mohammad
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.295-317
    • /
    • 2020
  • Investigation of the stability of arch dam abutments is one of the most important aspects in the analysis of this type of dams. To this end, the Bakhtiari dam, a doubly curved arch dam having six wedges at each of its abutments, is selected. The seismic safety of dam abutments is studied through time history analysis using the design-based earthquake (DBE) and maximum credible earthquake (MCE) hazard levels. Londe limit equilibrium method is used to calculate the stability of wedges in abutments. The thrust forces are obtained using ABAQUS, and stability of wedges is calculated using the code written within MATLAB. Effects of foundation flexibility, grout curtain performance, vertical component of earthquake, nonlinear behavior of materials, and geometrical nonlinearity on the safety factor of the abutments are scrutinized. The results show that the grout curtain performance is the main affecting factor on the stability of the abutments, while nonlinear behavior of the materials is the least affecting factor amongst others. Also, it is resulted that increasing number of the contraction joints can improve the seismic stability of dam. A cap is observed on the number of joints, above which the safety factor does not change incredibly.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Displacement aging component-based stability analysis for the concrete dam

  • Huang, Xiaofei;Zheng, Dongjian;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.241-246
    • /
    • 2018
  • The displacement monitoring data series reconstruction method was developed under equal water level effects based on displacement monitoring data of concrete dams. A dam displacement variation equation was set up under the action of temperature and aging factors by optimized analysis techniques and then the dam displacement hydraulic pressure components can be separated. Through the dynamic adjustment of temperature and aging effect factors, the aging component isolation method of dam displacement was developed. Utilizing the isolated dam displacement aging components, the dam stability model was established. Then, the dam stability criterion was put forward based on convergence and divergence of dam displacement aging components and catastrophe theory. The validity of the proposed method was finally verified combined with the case study.

Geotechnical considerations for the existing dam rehabilitation (기존댐 재개발시의 지반공학적 고려)

  • Jeon, Je-Sung;Shin, Dong-Hoon;Kim, Ki-Young;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.589-596
    • /
    • 2005
  • The public has negative understanding about dam construction nowadays although dam plays an important role in water supply to satisfy essential demand for living. Dam rehabilitation, in this actuality, has been recognized as an alternative to expedite continuous water policies related to irrigation and flood control. This study focused on dam rehabilitation and included its necessity and discussions on case histories associated with increasing reservoir capacity, spillway modification, overtopping protection, seepage control and improving stability of old dam. This paper, in geotechnical aspects, presents discussions of various rehabilitation methods and factors to be considered in designing dam rehabilitation.

  • PDF

The Lower Part Landsliding of Embankment Dam According to a Heavy Rainfall and the Reinforced Design for Their Protection (필(흙)댐체의 하부 성토법면의 붕괴에 따른 안정성 확보에 대하여)

  • Hwang, Seong-Chun;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.23-34
    • /
    • 2006
  • In a oo dam at oo city of Gyeongbuk, severe damages have been occurred on lower part of dam due to heavy rainfall for several years. This caused significant impediment for maintaining its original function. This is considered as an excellent case for overall improvement of stability of dam system through successful investigation and construction work. This paper present comprehensive specifications that are generalized and used for securing stability of dams by quoting this example.

  • PDF

A Study on the Effect of the Compaction Density on the Stability of Earth Dam (흙댐의 다짐밀도가 안정도에 미치는 영향에 관한 연구)

  • 윤충섭;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.82-95
    • /
    • 1989
  • This study was carried out for the stability analysis of earth dam by the variation of compaction density. The test samples were taken from five kinds of soil used for banking material and the degree of compaction for this samples were chosen 100, 95, 90, 85, and 80 percent. The stability problems were analysed by the settlement and camber( extra banking) of dam, strength parameter and dam slope, and coefficient of permeability and seapage flow through dam body. The results of the stability analysis of earth dam are as follows. 1. The more the fine particle increases and lower the compaction degree becomes, the lower the preconsolidation load becomes but the compression index becomes higher. 2. Sixty to eighty percent of settlement of dam occurs during the construction period and the settlement ratio after completion of dam is inversly proportional to the degree of compaction. 3. The camber of dam has heigher value in condition that it has more fine particle(N) and heigher dam height(H) with the relation of H= e(aN-bH-e). 4. The cohesion(C) decreases in proportion to compaction degree(D) and fine particle(N) with the relation of C= aD+ bN-c, but the internal friction angle is almost constant regardless of change of degree of compaction. 5. In fine soil, strength parameter from triaxial compression test is smaller than that from direct shear test but, they are almost same in coarse soil regardless of the test method. 6. The safety factor of the dam slope generally decreases in proportion to cohesion and degree of compaction but, in case of coarse soil, it is less related to the degree of compaction and is mainly afected by internal friction angle. 7. Soil permeability(K) decreases by the increases of the degree of compaction and fine particle with relation of K=e(a-bl)-cN) 8. The more compaction thickness is, the less vertical permeability (Kv) is but the more h6rzontal permeability (KH) is, and ratio of Kv versus KH is largest in range from 85 to 90 percent of degree of corn paction. 9. With the compaction more than 85 percent and coefficient of permeability less than ${\alpha}$X 10-$^3$cm/sec, the earth dam is generally safe from the piping action.

  • PDF

Stability analysis on the concrete slab of the highest concrete-faced rock-fill dam in South Korea

  • Baak, Seung-Hyung;Cho, Gye-Chun;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.881-892
    • /
    • 2017
  • Design and management of concrete slabs in concrete-faced rock-fill dams are crucial issues for stability and overall dam safety since cracks in the concrete face induced by stress, shrinkage, and deterioration can cause severe leakage from the reservoir into the dam. Especially, the increase of dam height to a certain level to enhance the storage capacity and to improve hydraulic stability can lead to undesirable deformation behavior and stress distribution in the existing dam body and in the concrete slabs. In such conditions, simulation of a concrete slab with a numerical method should involve the use of an interface element because the behavior of the concrete slab does not follow the behavior of the dam body when the dam body settles due to the increase of dam height. However, the interfacial properties between the dam body and the concrete slab have yet to be clearly defined. In this study, construction sequence of a 125 m high CFRD in South Korea is simulated with commercial FDM software. The proper interfacial properties of the concrete slab are estimated based on a comparison to monitored vertical displacement history obtained from the concrete slab. Possibility of shear strength failure under the critical condition is investigated based on the simplified model. Results present the significance of the interfacial properties of the concrete slab.

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Slops Stability Analysis of Carsington Dam (Carsington 댐의 사면안정 해석)

  • 손준익;안상로
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.75-86
    • /
    • 1991
  • In this paper the failure of Carsington Dam was discussed based on the informations reported in the first edition of Korean Geotechnical Society News. The causes of dam failure and its influences were evaluated based on the results of the slope stability analysis. The effects of the shear strain pre-existing in the yellow clay disclosed by the post-failure site investigation and the progressive nature of the dam failure were preponderantly evaluated. Stability analysis was performed based on the proposed values of strength parameters characterizing possible field ground conditions at failure. The calculated safety factors were evaluated for different cases of strength parameters in order to find the most probable field ground condition at the dam failue.

  • PDF

The Stability Evaluation for Pseudo-Static Analysis of Composite Dam (복합댐의 등가정적해석에 의한 안정성 평가)

  • 오병현;임정열;이종욱
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.205-212
    • /
    • 2002
  • It was performed that the stability evaluation using pseudo-static method and modified pseudo-static method for rockfill and rockfill-concrete section of composite dam. As a results of pseudo-static and modified pseudo-static analysis using seismic coefficient 0.154g, the maximum displacement at dam crest was occurred about 14~18cm on rockfill section and about 5~9cm on rockfill-concrete section, respectively. Also, that the factor of safety of down slope was more than 1.0~1.5. the rockfill and rockfill-concrete section of composite dam did not show any stability problems for 0.154g. Further research is still necessary in seismic safety of composite dam.

  • PDF