• Title/Summary/Keyword: Daisy Chain Topology

Search Result 5, Processing Time 0.022 seconds

Development of Smart NFC Security Authenticator(SNSA) (Smart NFC 보안인증기기(SNSA) 개발)

  • Kang, Jeong-Jin;Lee, Yong-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.177-181
    • /
    • 2013
  • As smart devices and OS with communication capabilities based latest NFC (Near Field Communication) have been spreaded, many applications with using existing RFID are being replaced to NFC. Smart NFC technology and existing services and devices can be easily combined convergence and advantage of smart phones, such as authentication and billing, medical care, the creation of a new paradigm of Network Communication are to be expected. By developing H/W, S/W of the Smart NFC Security Authenticator(SNSA), satisfying with wireless communication test results within accepted reference value, analyzing and testing the impact of topology, the signal performance of Daisy Chain Topology was much better than Star Topology's.

Experimental Verification of the Optimized TCN-Ethernet Topology in Autonomous Multi-articulated Vehicles (자율주행형 다관절 차량용 이더넷 TCN의 최적 토폴로지에 대한 실험적 검증)

  • Kim, Jungtai;Hwang, Hwanwoong;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.106-113
    • /
    • 2017
  • In this paper, we propose a suitable network topology for the Ethernet based Train Communication Network (TCN) for control system in a autonomous multi-articulated vehicle. We propose a network topology considering the structural constraints such as the number of cables and ports, and the performance constraints such as network response time and maximum throughput. We compare the network performances of star topology and daisy chain topology as well as hybrid topology, which is proposed in previous studies and a compromise between daisy chain and star topology. Here, the appropriate number of nodes in a group is obtained for the configuration of the hybrid topology. We first derive estimates of the network performance through simulation with different topologies, and then, implement the network by connecting the actual devices with each network topology. The performance of each topology is measured using various network performance measurement programs and the superiority of the proposed topology is described through comparison.

Study on the Optimization of Hybrid Network Topology for Railway Cars (철도 차량용 하이브리드 네트워크 토폴로지 최적화 연구)

  • Kim, Jungtai;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • In the train system, railway vehicles are connected in a line. Therefore, this feature should be considered in composing network topology in a train system. Besides, inter-car communication should be distinguished from in-car communication. As for the inter-car communication, the hybrid topology was proposed to use rather than the conventional ring, star, daisy-chain, and bus topologies. In the hybrid topology, a number of cars are bound to be a group. Then star topology is used for the communication in a group and daisy-chain topology is used for the communication between groups. Hybrid topology takes the virtue of both star and daisy-chain topologies. Hence it maintains communication speed with reducing the number of connecting cables between cars. Therefore, it is important to choose the number of cars in a group to obtain higher performance. In this paper, we focus on the optimization of hybrid topology for railway cars. We first assume that the size of data and the frequency of data production for each car is identical. We also assume that the importance for the maximum number of cables to connect cars is variable as well as the importance of the communication speed. Separated weights are granted to both importance and we derive the optimum number of cars in a group for various number of cars and weights.

Analysis of Network Topology for Distributed Control System in Railroad Trains (철도차량용 분산형 제어시스템을 위한 네트워크 토폴로지 분석)

  • Hwang, Hwanwoong;Kim, Jungtai;Lee, Kang-Won;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.21-29
    • /
    • 2015
  • For higher reliability against component failures in railroad trains with many electronic sensors and actuators, a distributed control system with which all electronic components are connected via a network is being considered. This paper compares and analyzes various topologies of Ethernet network for a railroad train in the aspects of (1) failure recovery, (2) the number of ports per device, (3) the number of cable connections between vehicles, and (4) performance. Especially, the unique characteristic of a train system that the number of vehicles changes is considered through analysis. Various combinations of in- and inter-vehicle topologies are considered. In addition, we introduce a hybrid of star and daisy-chain topology for inter-vehicle connection when the maximum number of inter-vehicle connections is limited to reduce possible failures of inter-vehicle connections. Simulation results show performance comparison between different topology combinations; the hybrid topology is shown to enhance delay performance even with a highly limited number of inter-vehicle connections.

Performance of Uncompressed Audio Distribution System over Ethernet with a L1/L2 Hybrid Switching Scheme (L1/L2 혼합형 중계 방법을 적용한 이더넷 기반 비압축 오디오 분배 시스템의 성능 분석)

  • Nam, Wie-Jung;Yoon, Chong-Ho;Park, Pu-Sik;Jo, Nam-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.108-116
    • /
    • 2009
  • In this paper, we propose a Ethernet based audio distribution system with a new L1/L2 hybrid switching scheme, and evaluate its performance. The proposed scheme not only offers guaranteed low latency and jitter characteristics that are essentially required for the distribution of high-quality uncompressed audio traffic, and but also provide an efficient transmission of data traffic on the Ethernet environment. The audio distribution system with a proposed scheme consists of a master node and a number of relay nodes, and all nodes are mutually connected as a daisy-chain topology through up and downlinks. The master node generates an audio frame for each cycle of 125us, and the audio frame has 24 time slotted audio channels for carrying stereo 24 channels of 16-bit PCM sampled audio. On receiving the audio frame from its upstream node via the downlink, each intermediate node inserts its audio traffic to the reserved time slot for itself, then relays again to next node through its physical layer(L1) transmission - repeating. After reaching the end node, the audio frame is loopbacked through the uplink. On repeating through the uplink, each node makes a copy of audio slot that node has to receive, then play the audio. When the audio transmission is completed, each node works as a normal L2 switch, thus data frames are switched during the remaining period. For supporting this L1/L2 hybrid switching capability, we insert a glue logic for parsing and multiplexing audio and data frames at MII(Media Independent Interlace) between the physical and data link layers. The proposed scheme can provide a good delay performance and transmission efficiency than legacy Ethernet based audio distribution systems. For verifying the feasibility of the proposed L1/L2 hybrid switching scheme, we use OMNeT++ as a simulation tool with various parameters. From the simulation results, one can find that the proposed scheme can provides outstanding characteristics in terms of both jitter characteristic for audio traffic and transmission efficiency of data traffics.