• Title/Summary/Keyword: Dairy product

Search Result 270, Processing Time 0.021 seconds

Survey on the Relationship between Milk and Milk Product Consumption and Dietary Nutrient Intake among Korean Adolescents (우리나라 청소년의 우유.유제품 섭취와 영양소 섭취 수준과의 관계)

  • Kim, Sunhyo;Kim, Wookyung;Kang, Myunghee
    • Journal of the Korean Dietetic Association
    • /
    • v.17 no.3
    • /
    • pp.313-326
    • /
    • 2011
  • This study was performed to investigate the relationship between milk and milk product consumption and dietary nutrient intake among Korean adolescents. Questionnaire survey and 3-day diet survey using the food record method were completed by a total of 664 subjects. Subjects were divided into three groups, Q1 (low group), Q2 (middle group), and Q3 (high group), according to dairy equivalent of calcium. Dairy equivalent of calcium was determined by the amount of calcium eaten from milk and milk products by individual subjects. As a result, the ratio of school milk service was higher in Q3 (P<0.001). The most frequent answer about the reason for consuming milk and milk products was 'to be taller' followed by 'good taste' and 'health promotion'. Preference for all types of milk such as white-, enriched-, and flavored-milk was higher in Q3 followed by Q2>Q1 (P<0.05). Ratio of mean daily dietary nutrient intakes of dietary fiber, vitamin C, folate, and calcium to RNI was lower than 2/3 for all of the groups. These mean daily dietary nutrient intakes were significantly higher in Q3 (P<0.05), and in particular, mean daily dietary calcium intake, which was the lowest nutrient consumed by Korean adolescents, was also the highest in Q3 followed by Q2>Q1 (P<0.05). The above results suggest that the school milk program is very helpful in encouraging adolescents to consume milk and milk products and consequently ensure their optimal nutrition. Therefore, we should try to encourage adolescents to participate in the school milk program more actively through nutritional education and government policy.

Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers

  • Kim, Eiseul;Cho, Eun-Ji;Yang, Seung-Min;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.280-289
    • /
    • 2021
  • Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.

Whey Protein-Based Edible Films and Coatings in Food Industry (식품산업에서 유청 단백질을 이용한 식용 필름과 코팅의 활용)

  • Jayeon Yoo;Sujatha Kandasamy;Hyoun Wook Kim;Hyung-Ho Bae;Jun-Sang Ham
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.219-229
    • /
    • 2023
  • Consumer demand for products with health benefits and natural ingredients is significant for the expansion of functional foods. Edible films and coatings are an excellent way to diversify the market for functional foods and as substitutes for the prevailing packaging and products. Incorporation of whey protein (WP) and its active ingredients into edible films and coatings is a promising technique that can be applied to various food products. Numerous combinations can be used on an industrial scale depending on the purpose, product, nature of the film, type of active ingredient, and type of inclusions. In this review, we describe several characteristics of edible WP films and coatings used as novel packaging materials. WP-based packaging can play a beneficial role in sustainability because of the option of recycling materials rather than incinerating, as in synthetic laminates, because of the use of natural byproducts from the food industry as raw materials. However, cost-effectiveness is a driving force against industrial setbacks in current and future WP processing developments. The industrial application of this new technology depends on further scientific research aimed at identifying the mechanism of film formation to improve the performance of both the process and product. Furthermore, research such as consumer studies and long-term toxicity assessments are required to obtain significant market shares.

Development of the Humanized Milk Part 1. Relative Nutritional Value, Preparation Chemical Composition of Humanized milk and Comparison of Commercial Products (Humanized Milk제조에 관한 연구 제 1 보 모유화분유 조제와 외국산제품과의 비교)

  • Yoo, Y.J.;Lee, T.L.;Kim, S.H.;Han, D.B.;Koh, J.B.;Jung, C.E.
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.91-97
    • /
    • 1974
  • This paper was developed for production of the humanized milk, comprising similarly to the composition and characteristic of human milk. Humanized milk of superior quality can be made directly from the fresh raw milk mixed vegetable oil, corn syrup, whey powder, ${\beta}-lactose$, sugar, vitamin, ${\beta}-carotene$ and minerals showing formulation of the humanized milk at table 2. The improving effects of adding vegetable oil and corn syrup are both more reformed the chemical and physical properties of humanized milk. The former enhanced the essential fatty acid and energy source in this product, the latter has the most solving function in water and induced amount of emulsion and stabilizer. The products contain about 13% protein, 23% fat, 58.3% carbohydrate, 2% ash and ensue reasonably balance of essential amino acid, poly-unsaturated fatty acid for the requirement of infants and controlled component of the humanized milk such as human milk.

  • PDF

Manufacture of Precheese Powder by Use of Low-temperature Renneting Made from Raw Milk Using Spray Dryer

  • An, Shuo-Feng;Piao, Jing-Zhu;Chang, Oun-Ki
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.551-559
    • /
    • 2010
  • Among the food constituents, proteins differ in coagulation properties as compared to other constituents in food system. Especially milk protein coagulate through different pathways thus this coagulability can be used for manufacture of various dairy products or as a determinant of dairy product analysis. These milk coagulation methods include organic solvent, isoelectric point, trichloroacetic acid, Ca-sensitive casein, heavy metal ion and rennet coagulation. The coagulation experiment was performed using above parameters at $0^{\circ}C$ and $25^{\circ}C$ to find the dehydration conditions before coagulating for precheese powder making. After different chemical treatments, there was no coagulation at $0^{\circ}C$ rather at $25^{\circ}C$ whatever the mode of coagulation methods was. The appearance of precipitate with coagulation methods was quite different from above mentioned methods of coagulation illustrated by scanning electron microscope. These powders were used for fabrication of camembert cheese by renneting coagulation at $0^{\circ}C$, showing the possibility of cheese materials and of food additives for fabrication of products.

Development of Farm Size Dairy Feedmill System in Korea(II) -Development of the TMR Main Center- (우리나라의 낙농단지규모에 알맞는 사료가공시설의 모델개발(II) -TMR 지원시설의 모델 개발-)

  • Kim, T.W.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-357
    • /
    • 1994
  • Current commercial dairy feed has various problems in low feed productivity, inadequate formulation and higher feeding cost due to excessive capital investment and non-specialized system for the end product. To solve those problems, 6 TMR terminal models were developed in this study. The developed TMR terminal system consists of TMR terminal, TMR main center and combined system linked TMR terminal and TMR main center. 15 TMR main center models were developed to support 10, 20, 30, 40, 50 TMR terminal(30 ton/day basis) by 3 different types, and evaluated for capital investment and operation cost by the analysis of the newly developed computer program. Optimum model size is analyzed and suggested for each model. Followings are summary of this study : 1. The capital investment costs of TMR main centers were 1,600 to 3,800 million won for type 1, 2,200 to 4,500 million won for type 2 and 2,200 to 4,800 million won for type 3. Also model MACE30 or bigger were justified as the economical models. 2. The feed production costs of TMR main center models were 3,166 to 4,824 won/ton for type 1, 3,816 to 6,182 won/ton for type 2 and 3,990 to 6,263 won/ton for type 3. So feed production cost range was 3,166 to 6,263 won/ton. 3. The bigger production capacity, the less TMR main center production cost. The feed production cost of the biggest model MACE50 was 62~65% of smallest model MACE10.

  • PDF

The Value of Milk and Korean Dietary Life (우유의 진가와 한국인의 식생활)

  • Kim, Sook-He;Kim, Hee-Sun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.16-31
    • /
    • 1999
  • Milk and milk products, especially the cow's milk and cheese, have been used since the ancient time. Because they contains almost all kinds of nutrients that are necessary for human beings except for iron, n-3 fatty acid, and vitamin C. Milk is an excellent dietary source of protein, calcium and phosphorus. The biological value of milk protein is as high as those of red meat and eggs. So cheese, a food processed from concentrated milk protein, is highly recommended food for the patient of diabetes mellitus. Because the major form of milk lipids is n-6 fatty acid, milk and milk products may not be a good food for the patients of cardiovascular disease. But the nutritional quality of milk lipids cannot be inferior to those of margarine, fish oil, and vegetable oil. Milk has been produced commercially since 1936 in Korea. The most popular milk product is a drink milk now in Korea. But according to the change of dietary pattern the consumption of yoghurt and cheese has been enormously increased during the last 20 years. As the soy sauce, tofu, and soy been paste have been the fundamental seasoning and source of protein in Korea, milk and cheese have consisted the essential flavor of western cuisine. But the basic idea for the usage of protein, peptides, and amino acids are the same. We found that milk and milk products can be nicely added in many Korean dishes such as Juk, Mandoo, Jeon, and Bindeatuk for the diversity of traditional flavor.

  • PDF

Formation of Cheese Flavor and EMC Technology (치즈 풍미성분의 형성과 EMC 제조기술)

  • Han, Kyeong-Sik;Jeon, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.88-96
    • /
    • 2003
  • Cheese flavor is derived from three main pathways, that are proteolysis, lipolysis and glycolysis, the extent of which varies according to the cheese variety. Proteolysis is the most complex of the three primary events during cheese ripening. The basis of EMC technology is the use of specific enzymes acting at optimum conditions to produce required cheese flavors from suitable substrates. These enzymes consist of proteinases, peptidases, lipases, esterases. The key factors in EMC production are the type of cheese flavor required, the type and specificity of enzyme or cultures used, their concentration and some processing parameters, such as pH, temperature, agitation, aeration, and incubation time. The emulsifiers, bacteriocins, flavor compounds, and precursors also effect to it importantly. The dosage of enzyme or starter culture used is dependent on the intensity of flavor required, processing time and temperature and the quality of the initial substrate. To produce a consistent EMC product it is necessary to have a highly controlled process, and a detailed knowledge of the enzymatic reactions under the conditions used must be fully understood.

  • PDF

Sensory Properties and Drivers of Liking for Pizza Crust (피자 크러스트의 특성과 소비자 기호 유도 인자)

  • Lee, Jisun;Ahn, Sungsoo;Chung, Lana
    • Journal of the Korean Society of Food Culture
    • /
    • v.31 no.6
    • /
    • pp.624-633
    • /
    • 2016
  • This study identified the sensory properties of samples of pizza dough at three pizza companies and three masonry oven pizzerias from Seoul, Korea and compared consumer acceptability among panels of university students. Six pizza dough samples were prepared (pan pizzas from Pizza Hut, Mr.pizza, and Dominos pizza, masonry oven baked pizzas from Appleteen, Mr.Lee's, and Pizza factory). Consumer tests were employed involving 97 Korean consumers. Consumers evaluated overall liking (OL), liking of appearance (APPL), odor (ODL), flavor (FLL), and texture (TXTL), willing to try (WT), and willing to recommend (WR) for the samples using a nine-point hedonic scale. Analysis of variance (ANOVA) indicated that HutP, MrP, and DomP samples had significantly (p<0.05) high scores for roughness, porosity, crust color, grain size, brownness, dairy food aroma, savory taste, and yeast aroma, which had the highest OL, ODL, and FLL scores. LeeP, ATeenP, and PFacP samples had high elasticity, cohesiveness, and adhesiveness. Consumers favored the appearance characteristics and color, dairy product flavor, and savory flavor of the pan pizza and preferred cohesiveness, toughness, and stickiness of masonry oven baked pizza.

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.