• Title/Summary/Keyword: Dairy manure

Search Result 93, Processing Time 0.033 seconds

Effects of Application Method of Dairy Liquid Manure on Productivity of Silage Corn and Sorghum × Sudangrass Hybrid and Soil Characteristics (젖소액비 시용방법이 담근먹이 옥수수와 수수 × 수단그라스 잡종의 생산성 및 토양특성에 미치는 영향)

  • Shin, J.S.;Lee, H.H.;Shin, D.E.;Jo, Y.M.;Jung, E.S.;Lee, J.K.;Yoon, S.H.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.4
    • /
    • pp.333-338
    • /
    • 1999
  • The experiment was carried out to find the effects of the application method of dairy liquid manure on productivity of silage corn(P3352) and sorghum $\times$ sudangrass hybrid(P988) and physical and chemical properties of soil during 2 years at Suwon. Crude protein content of T1(Chemical fertilizer) was highest by 6.5%, 8.9% in both forage, respectively, but total digestible nutrient(TDN) percent of T3(dairy liquid manure, basal + chemical fertilizer, topdressing) was highest by 73.8%, 59.0% in both forage, respectively. In TND yield, it was little different between T1(9.5 MT/ha) and others(8.4~9.3 MT/ha) at silage corn, but T4(chemical fertilizer at basal + dairy liquid manure at topdressing) was highest as 13.3 MT/ha at sorghum $\times$ sudangrass hybrid(p<0.05). pH of the soil after experiment was lower than that of the soil before experiment in the both forages, but soil organic matter was high at after trial than before trial. Available phosphorous and exchangeable cation were not shown the regular trend in this experiment. Based on the results of this experiment, it was not shown among different application method for silage corn (P3352), but application of chemical fertilizer at basal and liquid manure at topdressing was good for sorghum $\times$ sudangrass hybrid(P988).

  • PDF

De Marke, Dutch Model for Sustainable Dairy Farming (네덜란드 지속 낙농 모델 De Marke)

  • Ham, Jun-Sang;Choi, Yong-Soo;Fongers, Jan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • The Netherlands produce more than 11 million tonnes of milk per year, and approximately 60% of the milk is exported. Dutch milk production is five times higher than that of Korea, even though Korea comprises a land area three times greater than the Netherlands. Upscaling and intensification have characterized the Dutch way of dairy farming since 1960, and adverse effects of the intensification of dairy farming became evident from the late 1970s and early 1980s onwards. The transition toward a more sustainable farming system is a central element of the Dutch agenda for the reconstruction of the livestock production sector. The environmental problems in Dutch dairy farming in the 1980s have led to the establishment of the experimental dairy farm "De Marke" which aims at improving the utilization of fertilizers and feeds, through minimizing nutrient requirements, maximizing the use of nutrients in organic manure and homegrown feeds, and through the targeted use of fertilizers and feeds. 85 cows at "De Marke" produce 720 tonnes of milk per year, using 55 ha of pasture in a sustainable manner. That means, 150,000 ha of pasture are required to produce 2 million tonnes of milk, which the current milk production of Korea. It is urgent to provide sufficient pasture for sustainable milk production in Korea, and primarily the transition to pasture of surplus rice paddies, resulting from of a decrease in rice consumption, should be considered.

  • PDF

Chemical Properties of Dairy Slurry for Liquid Composting (液狀콤포스트化 處理에 있어서 乳牛糞尿의 化學的 特性)

  • 홍지형;최병민
    • Journal of Animal Environmental Science
    • /
    • v.1 no.2
    • /
    • pp.165-171
    • /
    • 1995
  • Aerobic treatment of animal slurries represents an increasingly popular option for farmers in the management of animal wastes. This study was performed to find out the chemical characteristics of dairy slurry associated with liquid-solid separation. Total solids concentration varies widely depending on the slurry manure handling systems. Hydrogen ion exponent(pH), volatile solids(VS), ammonia nitrogen(NH$_3$-N), nitrate nitrogen (NO$_3$-N), and chemical oxygen demand(COD) essentially depends on the total solids content of animal liquid wastes. Total solids content of the dairy slurry ranges from 6.6 to 7.5% depending on the feed slurry and separator. Separated liquids from dairy slurry have been successfully downed for up to about 21, 900mg/$\ell$ of the COD value. It has also been found that separated slurry decreased from 37.8 to 26.0mg/$\ell$ of the NO$_3$-N concentration.

  • PDF

Nitrogen Dioxide Emission from Livestock Manure Management (가축분뇨로부터 아산화질소 배출량 산출)

  • 전병수;정종원;김태일;유용희;최동윤;곽정훈;박치호;이현정
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • This study was conducted to calculate the amount of $N_2O$ emission from livestock manure management in Korea. $N_2O$ is considered a greenhouse gas emitted from livestock manure treatment. In order to calculate $N_2O$ emission, a percentage of nitrogen from livestock manure, livestock manure treatment facilities, and the number of livestock were collected. The amount of annual N excretion from beef cattle, dairy cattle, pigs, laying hen, and broiler were 37.00, 20.42, 12.37, 0.56, and 0.29kg, respectively Calculated $N_2O$ emission in 1990, 2005, 2010, 2015, and 2020 were 3.71, 5.84, 6.07, 6.23, and 6.53Gg, respectively. Increased $N_2O$ percentage in 2005, 2010, 2015, and 2020 compared to 1990 were 57.4, 63.6, 67.9, and 76.0%, respectively.

  • PDF

Cutting Frequency Effects on Forage Yield and Stand Persistence of Orchardgrass and Alfalfa-Orchardgrass Fertilized with Dairy Slurry

  • Min, D.H.;Vough, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.630-635
    • /
    • 2000
  • Previous research has not evaluated the effects of various rates and frequencies of manure application and frequencies of cutting on yield and stand persistence of cool-season grasses and alfalfa-grass mixtures. The primary objective of this study was to compare the effects of cutting management systems on herbage yield and stand persistence of orchardgrass (Dactylis glomerata L.) and an alfalfa (Medicago sativa L.)-orchardgrass mixture from various rates and frequencies of dairy slurry application. A randomized complete block design with treatments in a sub-subplot arrangement with four replicates was used. The main plot consisted of 2 cutting management systems (4 and 5 annual cuttings). The subplots were 9 fertility treatments: 7 slurry rate and frequency of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The split-split-plots were the two forage species: orchardgrass and alfalfa-orchardgrass mixture. The study was initiated after 1st cutting in 1995. Cumulative yields of the 2nd and subsequent cuttings of both orchardgrass and alfalfa-orchardgrass in 1995 were higher for the 5-cutting system than the 4-cutting system. The 1995 growing season was abnormally dry. In 1996, an abnormally wet year, the reverse was true, total herbage yields being higher for the 4-cutting system than the 5-cutting system. Species response to fertility rate/frequency treatments was different in both years. Higher application rates early in the season and carryover of nutrients from late season applications the previous year appear to be responsible for the yield increases of those fertility treatments having significant yield differences between the cutting management systems. The stand ratings of orchardgrass were not affected by cutting management. In the spring of 1997, however, the stand ratings of alfalfa-orchardgrass in the 4-cutting management system were significantly greater than the 5-cutting management system. The very high manure application rate significantly reduced the stand ratings of alfalfa-orchardgrass in the 5-cutting system.

Assessment of Optimum Hydraulic Retention Time (HRT) for Maximum Biogas Production and Total Volatile Solid (TVS) Removal Efficiency of Semi-Continuously Fed and Mixed Reactor (SCFMR) Fed with Dairy Cow Manure (젖소분뇨로부터 최대 바이오가스 생산과 유기물 제거효율을 달성하기 위한 반건식 간헐주입 연속혼합 혐기성반응조의 최적 수리학적 체류시간 도출을 위한 연구)

  • Kang, Ho;Kim, Sun-Woo;Jeong, Ji-Hyun;Ahn, Hee-Kwon;Jung, Kwang-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.696-704
    • /
    • 2015
  • This study was carried out to evaluate the optimum operational condition of Semi-continuously Fed and Mixed Reactor (SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) or decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased at mesophilic temperature ($35^{\circ}C$). The optimum operating condition of the SCFMR fed with TS 13% dairy cow manure and saw dust mixture was found to be an HRTs of 25 days and its corresponding OLRs of $4.45kg\;VS/m^3-day$. At this condition the biogas and methane production rates were 1.44 v/v-d and 1.12 v/v-d (volume of biogas per volume of reactor per day), respectively and the TVS removal efficiency of 37% was achieved. The successful operation with such a high OLR was due to the high reactor alkalinity concentration of 14,500~15,600 mg/L as $CaCO_3$ as a result of the characteristic of the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 8,000 mg/L as $CaCO_3$. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.11 and 0.43, respectively, that were greatly stable in operation. Free ammonia toxicity was not experienced due to the long term acclimation by the reactor TS content ranged 7.2~10.4% during the entire operational period.

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.

Characteristics of Manure and Estimation of Nutrient and Pollutant of Holstein Dairy Cattle (홀스타인 젖소 분뇨의 특성과 비료성분 및 오염물질 부하량 추정)

  • Choi, D.Y.;Choi, H.L.;Kwag, J.H.;Kim, J.H.;Choi, H.C.;Kwon, D.J.;Kang, H.S.;Yang, C.B.;Ahn, H.K.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.137-146
    • /
    • 2007
  • This study was conducted to determine fertilizer nutrient and pollutant production of Holstein dairy cattle by estimating manure characteristics. The moisture content of feces was 83.9% and 95.1% for urine. The pH of feces and urine were in the ranges of 7.0~7.4 and 7.5~7.8, respectively. The average BOD5, COD, SS, T-N, T-P concentrations of the dairy feces were 18,294, 52,765, 102,889, 2,575, and 457mg/ℓ, respectively. Dairy urine showed lower levels of BOD5(5,455mg/ℓ), COD(8,089mg/ℓ), SS(593mg/ℓ), T-N(3,401mg/l), and T-P(13mg/ℓ) than feces. The total daily produced pollutant amounts of a dairy cow were 924.1g(Milking cow), 538.8g(Dry cow), 284.4g(Heifer) of BOD5, 2,336.5g (Milking cow), 1,651.8g(Dry cow), 734.1g(Heifer) of COD and 4,210.1g(Milking cow), 2,417.1g(Dry cow), 1,629.1g(Heifer) of SS and 194.8g(Milking cow), 96.4g(Dry cow), 58.3g(Heifer) of T-N and 24.0g(Milking cow), 10.2g(Dry cow), 6.1g(Heifer) of T-P. The calculated amount of pollutants produced by a 450kg dairy cow for one year were 181.3kg of BOD5, 492.5kg of COD, 899.9kg of SS, 36.0kg of T-N and 4.1kg of T-P. The total yearly estimated pollutant production from all head(497,261) of dairy cattle in Korea is 90,149 tons of BOD5, 244,890 tons of COD, 447,491 tons of SS, 17,898 tons of T-N and 2,008 tons of T-P. The fertilizer nutrient concentrations of dairy feces was 0.26% N, 0.1% P2O5 and 0.14% K2O. Urine was found to contain 0.34% N, 0.003% of P2O5 and 0.31% K2O. The total daily fertilizer nutrients produced by dairy cattle were 197.4g (Milking cow), 97.4g(Dry cow), and 57.9g(Heifer) of Nitrogen, 54.2g(Milking cow), 22.2g(Dry cow), and 14.2g(Heifer) of P2O5 and 110.8g(Milking cow), 80.4g (Dry cow), and 39.5g(Heifer) of K2O. The total yearly estimated fertilizer nutrient produced by a 450kg dairy animal is 36.2kg of N, 8.8kg of P2O5, 24.6kg of K2O. The estimated yearly fertilizer nutrient production from all dairy cattle in Korea is 18,000 tons of N, 4,397 tons of P2O5, 12,206 tons of K2O. Dairy manure contains useful trace minerals for crops, such as CaO and MgO, which are contained in similar levels to commercial compost being sold in the domestic market. Concentrations of harmful trace minerals, such as As, Cd, Hg, Pb, Cr, Cu, Ni, Zn, met the Korea compost standard regulations, with some of these minerals being in undetected amounts.

Glucose Kinetics for Milk Synthesis in Etawah Crossbred Goats Fed King Grass Silage Prepared with Manure

  • Kiranadi, B.;Sastradipradja, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.982-985
    • /
    • 2002
  • A study was carried out to determine glucose kinetics, nutrient balance and milk production of lactating Etawah crossbred goats. The animals (27.2 to 29.1 kg BW) were randomly divided into four levels of dietary treatment groups: the first group R1 received 100% (3 kg) fresh king grass (Penisetum purpuroides), the second group R2 received 75% king grass and 25% king grass silage prepared with chicken manure, the third group R3 received 50% king grass and 50% silage, and the fourth group R4 received 100% silage. In addition to the roughage, each group received 800 g of concentrate (CP 14.77% of DM; 17.26 MJ/kg). Animals fed king grass silage made with chicken manure were found to be superior to the group fed king grass alone. Glucose kinetics and retained energy were significantly affected. Calculations showed that glucose requirements for maintenance and milk production can be met for the groups with high levels of silage (R3 and R4). The values of glucose flux were in the range of 2.52 to 4.50 mg/min.kg $BW^{0.807}$ which are lower, but close to, the values for the temperate lactating dairy cow. The present glucose flux value for the lactating Etawah crossbred goat is higher than the previous value published from this laboratory.

Effects of Surface-Applied Dairy Slurry on Herbage Yield and Stand Persistence : I. Orchardgrass, Reed Canarygrass and Alfalfa-Grass Mixtures

  • Min, D.H.;Vough, L.R.;Chekol, T.;Kim, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.758-765
    • /
    • 1999
  • Comparative studies of the effects of rates and frequency of application of dairy slurry on herbage yield and stand persistence of alfalfa and various forage grasses have not previously been conducted. The results being reported here are part of a larger study having a primary objective of comparing the effectiveness of alfalfa (Medicago sativa L.), various grasses and alfalfa-grass mixtures for utilizing nutrients from applied dairy slurry. The objectives of this part of the study were to evaluate the effects of various rates and frequencies of application of slurry on herbage yield and stand persistence of orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa-orchanrdgreass and alfalfa-reed canarygrass mixtures managed as a 4-cutting management system. A randomized complete block design with treatments in a split plot arrangement with four replicates was used. The main plots consisted of 9 fertility treatments: 7 slurry rate and time of application treatments, one inorganic fertilizer treatment, and an unfertilized control. The sub-plots consisted of the two grasses and two alfalfa-grass mixture mentioned above. Slurry was composed from stored solids scraped from the alleyways of a free-stall housing barn and water added to form a slurry having about 8% solids. Manure was pumped from a liquid spreader tank into 10.4 L garden water cans for manual application to the plots. Herbage yields within species were generally unaffected by various rates of application in the first production year. Herbage yields of grasses and alfalfa-grass mixtures the second year were generally not affected by frequency of application for the same rate of slurry applied. Slurry application resulted in greater herbage yield increases in grasses than alfalfa-grass mixtures in the 4-cutting management system. In general, herbage dry matter yields of grasses from the dairy slurry treatments equaled or exceeded yields from the inorganic fertilizer treatment. Stand ratings of grasses and alfalfa-grass mixtures were not changed by manure application rates. In this study, the highest rate of slurry ($967kg\;total\;N\;ha^{-1}$ in 1995 plus $2,014kg\;N\;ha^{-1}$ in 1996) was not detrimental to herbage yields or stand persistence of any of the species. It was concluded that applying dairy slurry to these cool-season grasses and alfalfa-grass mixtures managed in a 4-cutting system is an acceptable practice from the standpoint of herbage yield and satnd persistence and by doing so the utilization of inorganic fertilizers can be reduced.