• Title/Summary/Keyword: Daily flow monitoring data

Search Result 30, Processing Time 0.019 seconds

Development and Application of Coliform Load Duration Curve for the Geumho River (금호강 유역의 대장균 부하지속곡선 개발 및 적용)

  • Jung, Kang-Young;Im, Tae-Hyo;Kim, Gyeong-Hoon;Lee, In-Jung;Yoon, Jong-Su;Heo, Seong-Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.890-895
    • /
    • 2012
  • Duration curves describe the percentage of time that a certain water quality (total/fecal coliform (=TC/FC)) or discharge is exceeded. The curves methodology are usually based on daily records and are useful in estimating how many days per year and event will be exceeded. The technique was further applied to estimated TC/FC loading to the Geumho River, using the daily mean flow rate and TC/FC concentration data during January, 2001 and December, 2011 for the Geumhogang6 (=Seongseo water level station) where an automated monitoring station is located in Gangchang-bridge. Low flow of the Seongseo (=11.1 cms) was equivalent to 75.3% on an exceedance probability scale. Load Duration curve for TC/FC loading at the Seongseo was constructed. Standard load duration curve was constructed with the water quality criteria for class III (TC/FC concentration = 5000/1000 CFU/ 100 mL). By plotting TC/FC observed load duration curve with standard load duration curve, it could be revealed that water quality do not meet the desired water quality for 68.8/11.2% on an exceedance probability scale. IF linear correlation between flow rate and coliform concentration is assumed, it can be interpreted that water quality exceed desired criteria when daily average flow rate is over 11.9/109.9 cms.

Monitoring Mood Trends of Twitter Users using Multi-modal Analysis method of Texts and Images (텍스트 및 영상의 멀티모달분석을 이용한 트위터 사용자의 감성 흐름 모니터링 기술)

  • Kim, Eun Yi;Ko, Eunjeong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.419-431
    • /
    • 2018
  • In this paper, we propose a novel method for monitoring mood trend of Twitter users by analyzing their daily tweets for a long period. Then, to more accurately understand their tweets, we analyze all types of content in tweets, i.e., texts and emoticons, and images, thus develop a multimodal sentiment analysis method. In the proposed method, two single-modal analyses first are performed to extract the users' moods hidden in texts and images: a lexicon-based and learning-based text classifier and a learning-based image classifier. Thereafter, the extracted moods from the respective analyses are combined into a tweet mood and aggregated a daily mood. As a result, the proposed method generates a user daily mood flow graph, which allows us for monitoring the mood trend of users more intuitively. For evaluation, we perform two sets of experiment. First, we collect the data sets of 40,447 data. We evaluate our method via comparing the state-of-the-art techniques. In our experiments, we demonstrate that the proposed multimodal analysis method outperforms other baselines and our own methods using text-based tweets or images only. Furthermore, to evaluate the potential of the proposed method in monitoring users' mood trend, we tested the proposed method with 40 depressive users and 40 normal users. It proves that the proposed method can be effectively used in finding depressed users.

Development and Application of Coliform Load Duration Curve for the Geum River (금강에 대한 대장균 부하 지속곡선의 개발 및 적용)

  • Kim, Geonha;Yoon, Jaeyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.516-519
    • /
    • 2005
  • An useful protocol coiled load duration curve methodology to estimate contaminant loading to a river on an exceedance probability scale was developed in this research. The technique was further applied to estimate total coliform loading to the Geum River, using the daily mean flow rate and total coliform concentration data during January, 1996 and July, 2004 for the Gongju where an automated monitoring station is located. Drought flow of the Gongju (=50.3 cms) was equivalent to 40% on an exceedance probability scale. Load duration curve for total coliform loading at the Gongju was constructed. Standard duration curve was constructed with the water quality criteria for the class 2 (total coliform concentration = 1000 MPN/100 mL). By plotting load duration curve with standard duration curve, it could be revealed that water quality do not meet the desired water quality for 47% on an exceedance probability scale. If linearity between flow rate and coliform concentration is assumed, it can be interpretated that water quality exceeds desired criteria when average mean flow rate is over 51 cms.

Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter (마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형)

  • Choi, Jeonghyeon;Lee, Okjeong;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

Effects of the Voluntary Scheme of Total Maximum Daily Load based on Water Quality and Annual Evaluation data in the Gyeongan Watershed, South Korea (경안천 유역 수질 및 이행평가 자료를 통한 임의적 오염총량관리제도 시행의 성과 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.263-274
    • /
    • 2021
  • This study presents the achievements and limitations of the voluntary-based Total Maximum Daily Load (TMDL) through statistical analysis of water quality monitoring data and performance assessments of TMDL plans implemented in the Gyeongan watershed. The results clearly showed that responsible local governments complied the allocated TMDL and the designated water quality goals were successfully achieved in the required period. This was possible because the Ministry of Environment provided innovative incentives, such as, relaxations of the existing tight land-use regulations and full-scale financial aids for constructing and operating public treatment facilities to draw local government voluntary participation. However, a couple of problems which decreased the effectiveness and efficiency of the voluntary TMDL were identified. The different TMDL implementation schedules between upstream (Yongin) and downstream (Gwangju) governments caused delay in water quality improvement and exaggerated TMDL allocation to the local development which made excessive investment in the treatment facilities. Although it is not directly related to the voluntary scheme, technical methods for establishing and assessing the water quality goals should be improved so that the effects of flow conditions on water quality are properly assessed. We expect that results of this case study contribute to developing a more effective voluntary-based scheme for the implementation of the so-called 'tributary TMDL' in the future.

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Characteristics of Metal Pollutants and Dynamic EMCs in a Parking Lot and a Bridge during Storms (주차장 및 교량 강우유출수의 중금속 오염물질 특성과 동적 EMCs)

  • Kim, Lee-Hyung;Lee, Seonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • The control of nonpoint source pollution is essentially needed to successfully perform the Total Maximum Daily Load program. Of the various land uses in the nonpoint source, the paved areas such as a parking lot and a bridge are stormwater intensive land uses because of high imperviousness and high pollutant mass emissions. This research was performed to understand the magnitude and nature of the stormwater emissions with the purposes of quantifying stormwater pollutant concentrations and mass emission rates from a parking lot and a bridge. Two monitoring sites in Kongju city were equipped with an automatic rainfall gages and an automatic flow meter for accumulating the data such as rainfall, water quality and runoff flow rates. This paper will summarize the metal concentration changes during the storm duration and metal EMCs to characterize the concentration profiles in a parking lot and a bridge. Also a new concept, dynamic EMC, will be proposed to find the relationship between EMC and first flush effect. It can be used to determine the economical treatment criteria in best management practices.

Water Pollution Source Tracing Using FDC and Correlation Analysis in Geumho River Basin (FDC 및 상관관계 분석을 이용한 금호강 유역에서의 오염원추적)

  • Park, Kyung Ok;Lee, Chang Hee;Cha, Il Geun
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.232-243
    • /
    • 2016
  • In order to establish the watershed water quality management strategy of Total Maximum Daily Load(TMDL), it is necessary to understand the relationship between water quality component impacts, and to identify the impacts on downstream target point of watershed water quality management of waste treatment plant(WTP) discharge and upstream/tributary loads. In this study, we determined the impacts between the water quality contaminants, and traced water pollution sources using monitoring data of ministry of environment in tributaries and main stream and WTP monitoring data. Test area is set to Geumho river basin which has characteristics of urban and rural area and composes of GeumhoA, GeumhoB, GeumhoC watershed units in TMDL. The clustering with five grades of discharge data and the correlation analysis were performed through the FDC(Flow duration curve) analysis, which more clearly identified the points and water contaminants deteriorating target water quality of downstream point. This can be used as a tool for tracing pollutants with FDC analysis, and will help us establish the watershed water quality management strategy for TMDL target point in watershed more effectively.

Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed (지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Kim, Seongmin;Kim, Youngseok;Kim, Jin-pil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

Estimating BOD, CDO and TOC Hydrologic Flux in Nakdong River Basin (낙동강 유역 BOD, COD 및 TOC의 수문학적 플럭스 추정)

  • Lee, A-Yeon;Park, Moo-Jong;Jo, Deok-Jun;Kim, Sang-Dan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.830-839
    • /
    • 2010
  • This study presents a constituent load estimating procedure that can be operated with the present Korean TMDL monitoring system. The modified TANK model is used as a daily river flow simulation model whose parameters are estimated from 8-day intervals flow data. Constituent loads are estimated with the 7-parameter log linear model whose parameters are estimated by the minimum variance unbiased estimator. Results from Nakdong river basin reveals that the proposed procedure provides satisfactory TOC and BOD load estimates. As an application, a representative load duration curve is derived for working out a way to represent the overall hydrologic flux of BOD, COD and TOC at Nakdong river basin. The present water quality can be checked stochastically by Load Duration Curve through this study and presented visually.