• Title/Summary/Keyword: DY(Deflection Yoke)

Search Result 17, Processing Time 0.021 seconds

The Optimization Of SS-Type Deflection Yoke By Using Genetic Algorithm (유전 알고리즘을 이용한 SS형 편향코일의 형상 최적화)

  • Joo, K.J.;Yoon, I.G.;Kang, B.H.;Joe, M.C.;Hahn, S.Y.;Lee, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.971-973
    • /
    • 1993
  • Deflection Yoke(the following, DY) is the important electric device of CRT which deflects R, G, B beans influencing magnetic field produced by yoke coils. Recently, DY is designed to the saddle/saddle type of coils, being proposed for high-definite and high-efficient CRT. This paper presents the optimization of pin-sectioned saddle coil's shape for minimizing gap between desired and practical deflections of electron beams by using Genetic Algorithm. Evolution Startegy is utilized in this paper, since evolution strategy is a kind of genetic algorithms finding the optimized values by choicing the better generation with comparing the parents and their children. Here, the children are generated by only mutations from the normal random variables. Evolution strategy has shown better powerful converge rate than the other genetic algorithms becuase of using only the mutation-operator.

  • PDF

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Kim, D.E.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.19-22
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three-stepping motors placed in a non-magnetic frame were utilized for the mapping. Prior to the mapping starts, the inner contour of DY was measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed into various output formats such as multi pole harmonics of magnetic fields. Field shape in one, two and three- dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and some analysis results.

Development of the Integrated Information System for 3D Product Design/RP/CAE/3D Mold Design/Tooling (3차원 설계/RP/CAE/3차원 금형설계/제작 정보일원화시스템 개발)

  • 윤정호;전형환;안상훈;조명철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 1997
  • Concurrent Engineering is one of the methods which are used for the rapid product development. One of the important features in Concurrent Egineering is that the development process is to be parallel and the organization should be cross-functional. In order that the process be parallel and that the organization be cross-functional, an integrated information system such as PDM (Product Data Management) is required. Although the integrated data base is constructed, it could be meaningless if the application softwares were not inter-operable. This study shows an example of intergrated information system from three-dimensional product design to mold design and tooling for the development of Deflection Yoke(DY) which is one of the important parts of Cathode Ray Tube(CRT). A three-dimensional product design software, which is based on a commercial code, has been developed by ourselves. Selective Laser Sintering(SLS), which is one of the rapid prototyping techniques, has been used in this study. Mold design has been done by the three-dimensional way. A newly developed method of mold tooling, which is called Quick Die Manufacturing(QDM), has been introduced.

  • PDF

Flux Linkage Calculation for 3-D Finite Element Analysis

  • Im, Chang-Hwan;Jung, Hyun-Kyo;Kim, Hong-Kyu
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.12B no.1
    • /
    • pp.13-18
    • /
    • 2002
  • Novel method to calculate flux linkage for 3-D finite element analysis is proposed. It does not require any integral path if the current direction in a coil is known. The flux linkage can be calculated very easily using simple volume based integration. The current direction is calculated based on the recently developed technique by the authors. The novel method for flux linkage calculation is verified by applying to a very complicated deflection yoke coil. The simulation result is compared to the experimental one. From the simulation, it is shown that the proposed method is very accurate and effective to calculate the flux linkage of a coil.

A Study on the Efficient Finite Element Technique using Geometrical Symmetry (형상의 대칭성을 이용한 효율적인 3차원 유한요소 해석 기법에 관한 연구)

  • Im, Chang-Hwan;Kim, Hong-Gyu;Lee, Seok-Hui;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.462-467
    • /
    • 2000
  • In general, when geometry and current distribution have a periodic or symmetric property, the analysis of a part model is sufficient to represent that of a whole model by using the periodic boundary condition. It is impossible, however, to apply the periodic boundary condition when the current distribution is not symmetric even if the geometry of the model is symmetric. In this paper, a novel technique to resolve this problem is proposed. Even when the geometry is symmetric and the current distribution is not, the proposed method enables that calculation time for a whole model is reduced to that for a part model. The proposed method is applied to a deflection yoke (DY), and validness and efficiency of the method are verified.

  • PDF

3D Automatic Mesh Generation Scheme for the Boundary Element Method (경계요소법을 위한 3차원 자동요소분할)

  • Lee, H.B.;Lee, S.H.;Kim, H.S.;Lee, K.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Development and Construction of low Magnetic Field Control System for Analysis of Magnetic Field Effect in the Deflection Yoke (브라운관의 자기장 영향 분석용 저자기장 제어 장치의 설계 및 제작)

  • Park, Po-Gyu;Kim, Young-Gyun;Shin, Suk-Woo;Choi, Hyung-Ho;Kim, Tae-Ik;Jung, Dong-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.251-256
    • /
    • 2003
  • We have developed the quality analysis system for magnetic field effect of cathode-ray tube that is used a monitor, TV and medical appliance. We designed and constructed the large 3-axis square coil (2 m length) system for the generation of 3-component magnetic field using power supply, magnetometer and computer below 0.2 mT range. The coil constant is 30.31 ${\mu}$T, 29.73 ${\mu}$T and 30.51 ${\mu}$T for the X, Y and Z axis square coil respectively. The magnetic field resolution was 0.01 T. The uniformity of magnetic field was measured within 1 % in the range of 12 cm.