• Title/Summary/Keyword: DTPA derivatives

Search Result 4, Processing Time 0.023 seconds

Studies on the Biological Behaviors of Taxol Derivatives (Taxol 유도체들의 생물학적 거동에 관한 연구)

  • Awh, Ok-Doo;Yoo, Dae-Wung;Im, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.440-451
    • /
    • 1997
  • This study was designed to prospect the $^{111}In$-labelled paclitaxel as tumor imaging agent. In order to provide a taxol molecule with a functional group which is able to chelate In-111, taxol-DTPA conjugate and 2'-hemisuccinyltaxol were synthesized by esterification of taxol at C-2'on C-13 carbon with DTPA anhydride and succinic anhydride, respectively. Synthesis yield of the taxol derivatives was 34% for taxol-DTPA and 80% for 2'-hemisuccinyltaxol. Cytotoxicity of the taxol derivatives were measured by MTT method toward cell lines HT29, B16, P388, and CT26. The cytotoxic activities of the taxol derivatives were maintained, although less active than taxol. Radiolabelling of the taxol derivatives were proceeded directly with $^{111}InCl_3$ or indirectly with $^{111}In$-citrate(ligand-exchange method). The ligand-exchange method was not suitable because some precipitates appeared during the reaction. On the contrary, by direct radiolabelling method, we were able to obtain taxol-DTPA-$^{111}In$ in 100% radiochemical yield. However, 2'-hemisuccinyltaxol was not labelled by both methods. Yield and radiochemical purity of the radiolabelled com-pound were determined by HPLC, paper chromatography and instant thin layer chromatography. Taxol-DTPA-$^{111}In$ was characterized to be hydrophilic by lipophilicity test, and nearly non-adhesive to HT29, B16, P388, and CT26 by cell binding affinity test. Binding affinity of the taxol-DTPA-$^{111}In$ complex to serum proteins was also examined by protein precipitation with 30% trichloroacetic acid. The results showed that 30% of the taxol-DTPA-$^{111}In$ complex binds with serum proteins.

  • PDF

Preparation of an Amino Acid Based DTPA as a BFCA for Radioimmunotherapy

  • Choi, Kang-hyuk;Hong, Young-Don;Pyun, Mi-Sun;Choi, Sun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1194-1198
    • /
    • 2006
  • For the purpose of developing more effective chelating agents, we have synthesized a diethylene triamine pentaacetic acid(DTPA) analogue by using an amino acid. S-(N-Boc-aminophenyl)-Cys(t-Bu4-DTPA) methylester was prepared in 6 steps with total yield of 47.9%. For the sake of introducing a biomolecule to the DTPA derivative, a selective hydrolysis was performed with 3 M HCl/Ethylacetate = 1 : 3 ($25{^{\circ}C}$, 30 min, vigorous stirring). $^{166}Ho$-Cys-DTPA and $^{166}Ho$-Biotin-Cys-DTPA were prepared by mixing $^{166}Ho$ with DTPA derivatives at room temp in a HCl solution (pH = 5) and the radiochemical stabilities (> 99%) were maintained for over 6 hrs in vitro.

Retention Characteristics of Tc-99m-Pullulan-Derivatives in CT26 Tumor of Mice (마우스 CT26 종양에서 Tc-99m 표지 플루란유도체의 저류 특성)

  • Heo, Young-Jun;Song, Ho-Chun;Bom, Hee-Seung;Na, Kun;Kim, Seong-Min
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.6
    • /
    • pp.393-401
    • /
    • 2003
  • Objective: Pullulan derivatives (PD) can be used to make self-assembled hydrogel nanoparticles which are responsive to ionic strength. The aim of this study is to evaluate the potential of PD as a retaining carrier of radioisotope inside tumors. Materials and Methods: Four types of PD were evaluated which included pullulan acetate (PA), succinylated PA (SPA), PA-DTPA and SPA-DTPA conjugates. They were radiolabeled with Tc-99m. Labelling efficiencies were determined at 30 min, 1, 2, 4 and 12 hours after radiolabeling. CT-25 colon cancer cells were subcutaneously injected into Balb/c mice. After 2 weeks of subcutaneous injection, Tc-99m-labelled PD (Tc-99m-PD) were injected into the tumors. Whole body images of mice were obtained at 30 min, 1, 2, and 12 hr after intratumoral injection. All twenty mice were grouped into four groups by largest diameter; control A (largest diameter = 5 mm, n = 5), control B (largest diameter = 10 mm, n = 5), pullulan A (largest diameter = 5 mm, n = 5), pllulan B (largest diameter = 10 mm, n = 5). Dynamic images were obtained for 1 hour after intratumoral injection. Static images were obtained at 1 hr, 2 hr, 3 hr and 4 hr after intratumoral injection with Tc-99m pertechnetate and Tc-99m-PA. Target-to-background ratios and retention rates were calculated. Results: Labeling efficiencies of PA, SPA, PA-DTPA and SPA-DTPA were $94.5{\pm}5.9%,\;97.8{\pm}3.5%\;94.2{\pm}3.8%,\;and\;92.5{\pm}6.2%$, respectively (p>0.05). Percent retention rates (%RR) of PA and PA-DTPA were significantly higher than those of control, however, those of SP-DTPA and SPA became similar to control at 4 and 12 hr, respectively. %RR of pullulan A and pullulan B at 1, 4 and 8 hr is significantly higher than that of control (p < 0.05). However, %RR between pullulan A and pullulan B were similar. Conclusion: The lonic strength dependent PD-nanoparticles are retained in the tumor. No difference of %RR according to tumor size was noted. Therapeutic application of PD labelled with beta- or alpha- emitting radionuclides can be expected.