• Title/Summary/Keyword: DTF (Drop Tube Furnace)

Search Result 29, Processing Time 0.026 seconds

Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio (바이오매스(우드펠릿) 혼소율 및 입자크기에 따른 연소 특성에 관한 연구)

  • Sh, Lkhagvadorj;Kim, Sang-In;Lim, Ho;Lee, Byoung-Hwa;Kim, Seung-Mo;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

The Study on the Combustion and Ash Deposition Characteristics of Ash Free Coal and Residue Coal in a Drop Tube Furnace (DTF를 이용한 무회분 석탄과 잔탄의 연소 및 회 점착 특성에 관한 연구)

  • Moon, Byeung Ho;Kim, Jin Ho;Sh, Lkhagvadorj;Kim, Gyu Bo;Jeon, Chung Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.89-96
    • /
    • 2015
  • Recently, much research has been put into finding the causes and solutions of slagging/fouling problems that occur at the end of the boiler. This slagging/fouling, caused by low-rank coal's ash, disturbs the thermal power and greatly reduces efficiency. In environmental aspects, such as NOx pollution, governments have been implementing restrictions on the quantity of emission gases that can be released into the atmosphere. To solve these problems, research on Ash Free Coal (AFC), which eliminates ash from low-rank coal, is in progress. AFC has advantages over similar high-rank coals because it increases the heating value of the low grade coal, reduces the contaminants that are emitted, and decreases slagging/fouling problems. In this study, using a DTF, the changes of NOx emissions, unburned carbon, and the characteristics of ash deposition were identified. KCH raw coal, AFC extracted from KCH, residue coal, Glencore, and Mixed Coal (Glencore 85wt% and residue coal 15wt%) were studied. Results showed that AFC had a significantly lower emission of NOx compared to that of the raw coal and residue coal. Also, the residue coal showed a higher reactivity compared to raw coal. And finally, In the case of the residue coal and mixed coal, they showed a lower ash deposition than that of low-rank coal.

An Experimental Study on the Devolatilization Kinetics of Ashless coal in Fixed and Entrained Conditions (초청정 석탄의 탈휘발 반응률에 관한 실험적 연구)

  • Yu, Da-Yeon;Lee, Byoung-Hwa;Song, Ju-Hun;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.997-1003
    • /
    • 2011
  • In order to investigate devolatilization characteristics for ashless coal with relatively low ash content and high heating value, an experiment was performed in different bed configurations of TGA and DTF(Drop Tube Furnace) at atmospheric pressure condition. The heating rate was $10^{\circ}C$/min up to $950^{\circ}C$ in TGA, while the temperatures of DTF varied from 500 to $1300^{\circ}C$ in step of $200^{\circ}C$. A weight loss and particle temperature were obtained to determine devolatilization kinetics. The kinetic parameters including an activation energy and pre-exponential factor for ashless coal were obtained using Coats-Redfern method in TGA and single step method in DTF. Furthermore, the devolatilization kinetics of the ashless coal were compared with the results of different kinds of conventional coal such as sub-bituminous and bituminous. The results show that the activation energy of devolatilazation for ashless coal is lower than those of others in fixed and entrained conditions.

Coal Ash Combustion Simulation for 500-MW Coal-firing Boiler (500MW급 화력발전 보일러의 석탄회 연소 시뮬레이션)

  • Hwang, Min-Young;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Gyu-Bo;Kim, Seung-Mo;Park, Myung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.939-946
    • /
    • 2011
  • In thermal power generation companies, the recycling of refined ash (LOI < 6%) obtained from a PC-firing furnace is beneficial for the companies, e.g., it can be used for making lightweight aggregates. However, ash having a high LOI, which cannot be reused, is still buried in the ground. To obtain refined ash, the re-burning of high-LOI ash (LOI > 6%) in a PC-firing furnace can be an alternative. In this study, a numerical analysis was performed to demonstrate the effects of ash re-burning. An experimental constant value was decided by TGA (thermo-gravimetric analysis), and a DTF (drop-tube furnace) was used in the experiment for calculating the combustion of ash. On the basis of the trajectory of the moving particles of coal and ash, it was concluded that supplying ash near the burner, which is located high above the ground, is appropriate. On the basis of numerical results, it was concluded that an ash supply rate of 6 ton/h is suitable for combustion, without affecting the PC-firing boiler.

Drop Tube Furnace Studies of Coal Combustion on the Fuel-N Release and NOx Emission (질소 해리도와 NOx의 방출 특성 비교를 위한 DTF 연소실험)

  • Park, Chu-sik;Han, Woong;Kim, Sung-one;Choi, Sang-Il;Park, Seok-ho
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.41-45
    • /
    • 1999
  • 연소 중에 발생하는 주요 공해물질 중의 하나가 질소산화물(NOx)이며 석탄의 연소에서는 타 연료를 사용하는 연소와 비교하여 많은 양의 질소산화물이 생성된다. 이러한 현상은 석탄에 결합되어있는 연료 중 질소(fuel-N)의 산화에 기인한 것이다. 석탄 연소 시 fuel-N에 의하여 생성되는 질소산화물은 전체 질소산화물의 75%이상, 때에 따라서는 95%까지 점하는 결과를 보여 준다.(중략)

  • PDF

Characteristics of UBC and NOx Emission in Air Staging Combustion (공기 다단 연소 기법 적용에 따른 미연탄소분 및 질소산화물 배출특성)

  • Kim, Jeong Woo;Lim, Ho;Go, Young Gun;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.637-644
    • /
    • 2016
  • The purpose of this study is to understand the characteristics of unburned carbon (UBC) and NOx emissions for pulverized coal when air staging combustion is applied. A two-staged drop tube furnace capable of applying air staging combustion was designed and installed. The combustion of sub-bituminous (Tanito) has been investigated. UBC and the NOx concentration were measured under various temperatures and stoichiometric ratios in unstaged and staged combustion. As a result, UBC decreased and the NOx concentration increased with an increase in stoichiometric ratio and temperature. In particular, the NOx reduction mechanism was activated when the temperature in the fuel rich zone increased. Both UBC and the NOx concentration decreased as the temperature increased in the fuel rich zone. A high NOx reduction effect was obtained, compared to the UBC increase, when the air staging technique was applied.

Determination of Char Oxidation Rates with Different Analytical Methods (국내 수입탄 촤의 산화반응률 측정을 위한 해석기법 비교)

  • Lee, Byoung-Hwa;Song, Ju-Hun;Kang, Ki-Tae;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.876-885
    • /
    • 2009
  • Char oxidation experiments were performed with a sub-bituminous roto-middle coal in the Drop Tube Furnace (DTF) at atmospheric pressure condition. While temperatures varied between 900, 1100, 1400 $^{\circ}C$, particle size, mass, particle temperature, and CO/$CO_2$ concentration were obtained to be used for kinetic analysis of the char oxidation. This study addresses several different methods to analyze the char consumption rate, which are classified as energy balance method, ash-traced mass method, flue-gas based method, and particle size based method. The char consumption rate obtained with such methods was compared with the results of Monson et al.$^{(24)}$ While there are some differences between them because of differences in experimental apparatus and parameters to be measured, the kinetic results seems to be reasonable enough to be incorporated in a numerical modeling of coal combustion.

Analysis of the Effect of Particle Size and Humidity on Reaction Characteristics of $CaCO_3$ Sorbent Particle under Air and $O_2/CO_2$ Atmospheric Conditions (공기연소 분위기와 순산소 연소 분위기에서 입자 크기와 습도가 $CaCO_3$ 흡착제 입자의 반응특성에 미치는 영향 분석)

  • Jeong, Seongha;Lee, Kang Soo;Keel, Sangin;Yun, Jin Han;Kim, Sang Soo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • It is necessary to find out the reaction characteristics of $CaCO_3$ sorbent particles in air and $O_2/CO_2$ atmospheric conditions in order that an in-furnace desulfurization technique can be applied to oxy-fuel combustion system. In this study, rate of change of GMD(geometric mean diameter) and specific surface area of $CaCO_3$ sorbent particles reacted in DTF(drop tube furnace) experimental setup were analyzed to investigate the effect of particle size and humidity on the reaction characteristics of them. In air atmospheric condition, calcination process occurs actively within shorter residence times as the particle size increases. On the contrary, in $O_2/CO_2$ atmospheric condition, a calcination process is delayed as particle size increases. The increment of humidity accelerates calcination process in an air atmospheric condition and increase rate of calcination in an $O_2/CO_2$ atmospheric condition.

Comparative Study of Char Burn-Out and NOx Emissions in O2/N2 and O2/CO2 environments (순산소 분위기에서 촤 연소 및 질소산화물 배기특성 비교)

  • Lee, Chun-Sung;Kim, Seong-Gon;Lee, Byoung-Hwa;Chang, Young-June;Jeon, Chung-Hwan;Song, Ju-Hun
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • The char burn-out and NOx emissions from sub-bituminous coal were investigated in drop tube furnace under $O_2/N_2$ and $O_2/CO_2$ environments with different $O_2$ concentrations of 12, 21 and 31%. Results show that the char burn-out rate is faster as $O_2$ concentration increases higher and char burn-out rate under $O_2/CO_2$ decreases due to the lower oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. NO concentration increases with increasing $O_2$ concentration, but declines at $O_2$ concentration of 31%. Meanwhile, NO emission indexes decreases monotonically with increasing $O_2$ concentration, which indicates that more NO reduction occurs with higher $O_2$ concentration probably due to greater HCN formation. For all conditions of $O_2$ concentration, the NO concentration under $O_2/N_2$ maintains higher than those of $O_2/CO_2$ due to presence of thermal NO.