• Title/Summary/Keyword: DSSC efficiency

Search Result 179, Processing Time 0.021 seconds

Improved sintering process of counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.227-228
    • /
    • 2012
  • In interfaces between carbon black or Pt and FTO glass in dye-sensitized solar cell counter electrodes, a marginal resistant channel for electrons, we tried to improve the connection by modifying the sintering process. A stepwise sintering process for carbon black and Pt counter electrodes was applied and its effect on power conversion efficiency was studied. Power conversion efficiencies of built-in DSSC made by a one-step sintering process with carbon black and Pt counter electrodes were about 5.01% and 5.02%, respectively. Cells made with the stepwise sintering process were 5.96% and 6.21%, respectively, indicating an 20% improvement. Fill factor (FF) increased, and it was them main reason for the power conversion efficiency improvement. Step wise sintering increased the adhesion of the interface and reduced the film thickness and surface roughness. As a result, the resistivity of the counter electrode and EIS impedance of DSSCs decreased.

  • PDF

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes (작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구)

  • Kim, Bora;Song, Suil;Lee, Hak Soo;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2014
  • The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employing multi-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined with using EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in the $TiO_2$-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5% compared to the $TiO_2$ only working electrode. The higher light conversion efficiency may attribut to the high electrical conductivity of MWCNT in $TiO_2$-MWCNT composite which improves the electron transport in the working electrode. However, higher amount of MWCNT than 0.1 wt% in the $TiO_2$-MWCNT composite decreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light by MWCNT and to the decreased adsorption of dye onto $TiO_2$. The MWCNT employed counter electrode exhibited much lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counter electrode showed similar in light conversion efficiency to that of Pt-counter electrode.

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.

Enhancement of Photocurrent Efficiency in Dye-sensitized Solar Cells Using Nanometer-sized Y-incorporated TiO2 Materials

  • Kim, Su-Jung;Yeo, Min-Kyeong;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1220-1224
    • /
    • 2012
  • This study examines the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) when nanometer-sized Y (0, 0.1, 0.5, and 1.0 mol %)-incorporated $TiO_2$ prepared using a solvothermal method is utilized as the working electrode material. The photoelectric properties of the Y-$TiO_2$ used in DSSCs were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopy. The recombination was much slower in the Y-$TiO_2$-based DSSCs than in the pure $TiO_2$-assembled DSSC. Compared to that using pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of Y-$TiO_2$ in the DSSCs to approximately 6.08% for 0.5 mol % Y-$TiO_2$.

Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells (염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성)

  • Park, Kyung-Hee;Jin, En-Mei;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

Influence of Nanostructured TiO2 Electrode Fabricated with Acid-treated Paste on the Photovoltaic Efficiency of Dye-Sensitized Solar Cells (산처리된 페이스트로 제조한 나노 구조체 TiO2 전극이 염료감응형 태양전지의 효율에 미치는 영향)

  • Lee, Jae-Wook;Hwang, Kyung-Jun;Roh, Sung-Hee;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.356-360
    • /
    • 2007
  • Recently, dye sensitized solar cells (DSSCs) composed of nanoporous $TiO_2$, light-sensitive dyes, electrolytes, and counter electrode have been received much attention. Nanostructured particles with higher surface area for the higher adsorption of Ru (II) dye are required to increase the quantity of light absorption. Also, it has been reported that the key factor to achieve high energy conversion efficiency in the photoelectrode of DSSC is the heat treatment of $TiO_2$ paste with acid addition. In this work, we investigated the influence of acid treatment of $TiO_2$ solar cell on the photovoltaic performance of DSSC. The working electrodes fabricated in this work were characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), field emission scanning electron microscope (FE-SEM), and atomic force microscope (AFM). In addition, the influence of nanostructured photoelectrode fabricated with the acid-treated paste on the energy conversion efficiency was investigated on the basis of photocurrent-potential curves. It was found that the influence of acid-treated paste on the photovoltaic efficiency was significant.

A Series of N-Alkylimidazolium Propylhexanamide Iodide for Dye-Sensitized Solar Cells

  • Lim, Sung-Su;Sarker, Subrata;Yoon, Sun-Young;Nath, Narayan Chandra Deb;Kim, Young-Jun;Jeon, Heung-Bae;Lee, Jae-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1480-1484
    • /
    • 2012
  • We report a series of novel imidazolium iodides based ionic liquids (NMIPHI, NAIPHI, and NBIPHI) with different functional groups for the development of a quasi-solid type electrolyte for dye-sensitized solar cells (DSSCs). The diffusion coefficients of redox ions ($I^-$ and $I_3{^-}$) are dependent on the molecular weight and it was higher for lighter salts. Among the three ionic liquids, NMIPHI showed highest efficiency of 4.18% when it was used in a liquid electrolyte of a DSSC with $ca$. 6 ${\mu}m$ thick $TiO_2$ mesoporous film. Even though the efficiency was $ca$. 19% lower than that obtained from a liquid electrolyte composed of PMII. When NMIPHI was mixed with PMII with a molar ratio of 1:1 in a solvent free electrolyte, the efficiency of the DSSCs was enhanced compared to that based on pristine PMII.

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.

High-Efficiency Dye-Sensitized Solar Cells by Extended Spectral Response Utilizing Dye Selective Positioning Method

  • Lee, Do-Gwon;Park, Se-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.1-12.1
    • /
    • 2010
  • We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO2 layer through selective desorption and adsorption processes. Only upper part of the first adsorbed N719 dye was selectively removed by the desorption solution formulated with polypropylene glycol and tetrabutylammonium hydroxide without any damages of the dye. The desorption depth was controlled by the number of desorption process. Multi-dyed dye-sensitized solar cells (MDSSC) were fabricated by utilizing the method and their photovoltaic properties were investigated. From the incident photon-to-current conversion efficiency (IPCE) measurement, it was found that the MDSSC exhibited the extended spectral response for the solar spectrum while without decrease of maximum IPCE value compare to the DSSCs using one kind of dye (N719 or N749). The highest photocurrent density of 19.3 mA/cm2 was obtained from the MDSSC utilizing $15\;{\mu}m$ N719 / $14\;{\mu}m$ N749 bi-layered mesoporous TiO2 film. The photocurrent density was 25% and 8% higher than that of the DSSC using only N719 and N749 dye as a sensitizer, respectively. The power conversion efficiency of 9.8% was achieved from the MDSSC under the AM 1.5G one sun illumination.

  • PDF