• Title/Summary/Keyword: DSRC 안테나

Search Result 16, Processing Time 0.031 seconds

Design of Circularly Polarization Patch Array Antenna for DSRC (DSRC 통신을 위한 원형 편파 패치 배열 안테나 설계)

  • Kim, Hyun-Chul;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.144-150
    • /
    • 2012
  • In this paper, circularly polarization patch array antenna of RSE(Road-side Equipment) base station for DSRC(Dedicated Short Range Communication) of ITS(Intelligent Transport System) is proposed. The antenna of RSE base station for DSRC is designed to operate circularly polarization to receive reflected signal from multiplex path effectively. The proposed antenna consisted of microstrip patch and feed line, the slit is inserted in the proximity of the slot of feed structure to generate circularly polarization. The $2{\times}2$ array structure is designed to satisfying gain that DSRC RSE base station antenna required. Measured impedance bandwidth and axial-ratio bandwidth are satisfied by all DSRC band of 5.795~5.855 GHz. Vertical and horizontal HPBW of the proposed antenna are both about 43 degrees, it showed gain characteristic of about 11.21 dBi.

A Study on Design of Microstrip Patch Antenna for Dedicated Short Range Communication (DSRC용 마이크로스트립 패치 안테나 설계 연구)

  • Park, Byeong-Ho;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.393-400
    • /
    • 2015
  • As the development and distribution of the intelligent transport system is spreading recently and some of the services are commercialized through a pilot project, interest in DSRC with high utilization is increasing and antennas for roadside and on board equipment are being studied. A single patch was used for a vehicle antenna due to the requests of miniaturization of size, but there was performance degradation in most cases due to miniaturization. In addition, some methods to improve performance have been used in the antennas that were previously researched using the arrays, but they have the disadvantages of bulkiness in size of the antennas when using the arrays. Therefore, in this paper, the CPW fed microstrip patch antenna with the simple structure of being compact and easy to produce, which can be used in the OBU of DSRC, was designed.

Design of Dual-Polarized and Multi-Band Multi-Layer Patch Antenna (다층구조의 이중편파 다중대역 패치 안테나 설계)

  • Choi, Jong-Ho;Jeong, Bong-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.156-161
    • /
    • 2015
  • In this paper, a dual-polarized multi-band multi-layer antenna for a vehicle, which operates in the GPS, bluetooth, and DSRC bands, was implemented. The antenna was designed as a multi-layer structure, and a FR4-epoxy substrate with =4.4 and =1.6mm was used. GPS and DSRC antennas have circular polarized characteristics, and a single probe feeding method was applied. Simulated results by Ansys HFSS v11 was compared with the measured ones. The size of the optimally designed antenna is $67mm{\times}67mm{\times}4.8mm$, -10dB bandwidth of the anatenna was measured to be 820MHz, 127MHz, and 862MHz in each band, and 3dB AR bandwidth of the antenna was simulated to be 19MHz and 110MHz in GPS and DSRC bands. The results confirmed that suggested system satisfies the system requirements.

The Study of Interference Cancellation between DSRC and ETC with Adaptive Array Antenna (적응 배열 안테나를 이용한 DSRC와 ETC 상호간 간섭 제거에 관한 연구)

  • 정재승;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1147-1155
    • /
    • 2000
  • The installation of wireless communication system for various services of ITS at 5.8 GHz generates mutual interference. The representative example, the sharing of frequency between DSRC system and ETC system is a cause of communication error or disturbance both sides or one side owing to mutual interference. As a solution, a Shield Plate, Antenna Directionality, Power Control is proposed, but these are not perfect solution, because a RSU doesn't have the information of position of interferer. This paper applies an adaptive array antenna which makes a gain for desired users, makes a null for interferer, to up-link, down-link of DSRC and ETC system. The analysis of BER performance shows the effect of reduced interference about 20 dB.

  • PDF

Compact Planar Array Antenna of a Vehicle Navigator for 5.8GHz DSRC scheme (5.8GHz DSRC 방식의 무선통신을 위한 자동차 내비게이션 단말기의 소형 평면배열 안테나)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • In this paper, microstrip array antenna is proposed for the wireless communication of DSRC(dedicated short range communication) scheme at 5.8GHz, which works as a part of the Navigation terminal. The microstrip patches minimized from a rectangular microstrip antenna with a half wavelength are arrayed to be mounted on the narrow and long area in the top side of the navigation terminal. Besides, the array antenna can limit its own beamwidth to the driving lane and has better directivity. It is simulated to verify the validity of the proposed application. The prototype fabricated has a volume of $18{\times}40{\times}0.8mm^3$. From the measurement, it has circular polarization performance of 4dB axial ratio over 40MHz frequency band. In addition, antenna gain of 6.2dBi and 3dB beamwidth of $70^{\circ}$ at cross section of driving lane have been achieved.

A Study on the Establishment of Quality Control Standards for Accuracy Improvement of DSRC Traffic Information System (DSRC 교통정보 정확도 개선을 위한 품질관리 기준수립 연구)

  • Hwang, Taehyun;Won, Insu;Kwon, Jangwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.44-57
    • /
    • 2020
  • A dedicated short-range communications (DSRC) traffic information system is a detection system for a section of road using communication between roadside equipment and on-board High-Pass units to collect road traffic information and provide reliable traffic information to drivers. The Ministry of Land, Infrastructure, and Transport announced that a DSRC system must be supported to pass the performance evaluation of an intelligent transportation system (ITS), and the performance evaluation for DSRC systems installed in expressways and national highways is started. Currently, DSRC traffic information systems are only managed for maintenance and functional-monitoring purposes, which means that detailed criteria for the operation of a DSRC traffic information system, such as communication range, the direction of the antenna, and the power of the radio wave, etc., need to be established. In this paper, the criteria of the performance evaluation of a DSRC traffic information system are presented for different road types and road environments. The proposed performance evaluation criteria included the communication range and communication power of roadside equipment. In addition, installation criteria, such as the direction of the antenna, and the height and angle of the installed system, are presented for different road types and road environments. The criteria presented were evaluated for DSRC roadside equipment and documented to improve system maintenance and quality control of the communication system.

Performance Analysis of DSRC(Dedicated Short Range Communication) Physical Layer (DSRC(Dedicated Short Range Communication) Physical Layer 성능 분석)

  • 정재승;이병섭;오현서;임춘식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.286-293
    • /
    • 2000
  • This paper treats performance analysis and improvement of DSRC physical layer which is discussed for standardization at the ISO TC-204 WG-15. DSRC is a short range wireless communication for which distance is less than 100m between RSU and O BE, since DSRC requires cheap and simple modulation technique, ASK is being developed as standard modulation system among PSK, FSK and ASK in our country. This paper analyzes the performance of DSRC physical layer system which is at the first stage of development under Rician fading channel, more sepcifically, the validity of the system and the performance limitations are shown. Both equalizer and antenna diversity techniques are simulated to improve the ASK system performance.

  • PDF

Analysis of the RF Link Design for ETCS and Study on the Communication Zone by the Antenna Beam Pattern (ETCS용 RF 링크 설계와 안테나 빔 패턴에 의한 통신 영역 연구)

  • Yim Choon-Sik;Ha Jae-Kwon;Ahn Dong-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.21-30
    • /
    • 2004
  • This paper describes the design of RF link between RSE and OBU of ETCS and the analysis of the antenna beam pattern to get a proper communication area in the cross direction and traveling direction of lanes. This stage should be performed prior to determination of system requirements of ITS service based on active DSRC. This study is important and fundamental technical analysis to design and implement base station of ETCS.

  • PDF

Performance of Vehicle Detection Using Alamouti for ITS (ITS를 위한 Alamouti 기법을 이용한 차량 검출 성능 분석)

  • Kim, Seung-Jong;Park, In-Hwan;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.79-84
    • /
    • 2011
  • In this paper, we analyzed performance of vehicle detection for ITS (Intelligent Transport System) applications. We simulated the vehicle detection at Hi-Pass System is based on DSRC (Dedicated Short Range Communication). DSRC is a wireless network using ITS, including GPS (Global Positioning System) satellites in conjunction with the national transportation system. The system performance is evaluated in terms of bit error probability. In the simulation, the vehicle speed is set at 60 km/h and carrier frequency is 5.8 GHz. Wireless channel is modeled as the Rician fading channel. In the transmitter, the ASK (amplitude shift keying) modulation scheme is applied. From simulation results, we confirmed that performance of applied Alamouti scheme is better than other systems.