• Title/Summary/Keyword: DSF Model

Search Result 18, Processing Time 0.02 seconds

Wind Effects on Tall Buildings with a Porous Double-Skin Façade

  • Shengyu Tian;Cassandra Brigden;Caroline Kingsford;Gang Hu;Robert Ong;K.C.S. Kwok
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.265-276
    • /
    • 2022
  • Double-Skin Facades (DSF) on tall buildings are becoming increasingly common in urban environments due to their ability to provide architectural merit, passive design, acoustic control and even improved structural efficiency. This study aims to understand the effects of porous DSF on the aerodynamic characteristics of tall buildings using wind tunnel tests. High Frequency Force Balance and pressure tests were performed on the CAARC standard tall building model with a variable porous DSF on the windward face. The introduction of a porous DSF did not adversely affect the overall mean forces and moments experienced by the building, with few differences compared to the standard tall building model. There was also minimal variation between the results for the three porosities tested: 50%, 65% and 80%. The presence of a full-height porous DSF was shown to effectively reduce the mean and fluctuating wind pressure on the side face of the building by about 10%, and a porous DSF over the lower half height of the building was almost as effective. This indicates that the porous DSF could be used to reduce the design load on cladding and fixtures on the side faces of tall buildings, where most damage to facades typically occurs.

Analysis for Spray Flow Using PSIC Model in Combustion Chamber of Liquid Rocket Engine (PSIC 모델을 이용한 액체로켓의 연소실내 분무유동 해석)

  • Jeong Dae-Kwon;Roh Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.253-256
    • /
    • 2006
  • A numerical study for spray flow of fuel and oxidizer droplets in the combustion chamber has been conducted prior to the analysis of spray combustion of the liquid rocket engine. As the spray combustion model, DSF model and Euler-Lagrange scheme have been used. While the coupling effects of the droplets between gas phase and evaporated vapor have been calculated using PSIC model, SIMPLER algorithm and QUICK scheme have been used as numerical schemes. As the results, the calculations have shown velocity and temperature distribution in combustion chamber as well as mole fraction of fuel and oxidizer.

  • PDF

A Study on the Cavity Height of Muti-Story Double-Skin Facade for better Thermal Performance (열성능을 고려한 다층형 이중외피의 중공층 높이에 관한 연구)

  • Shin, Seon-Joon;Jo, Jae-Hun;Seok, Ho-Tae;Kim, Kwang-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.53-62
    • /
    • 2005
  • In this study, the thermal performance of multi-story double-skin facade(DSF) with variation of cavity height is evaluated to offer useful data in determining cavity height of multi-story DSF. For this, thermal criteria for multi-story DSF is adopted and a DSF model for evaluation of the thermal performance is established. Through the evaluation of CFD simulation, the recommended height of multi-story DSF is 5 stories or less to improve the thermal performance during the intermediate season.

A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment (직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구)

  • Kim, Hun-Gwan;Song, Chang Yong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.187-196
    • /
    • 2021
  • The paper deals with comparative study for characteristics of approximation of design space according to various approximate models and sensitivity analysis using orthogonal array experiments in structure design of active type DSF which was developed for float-over installation of offshore plant. This study aims to propose the orthogonal array experiments based design methodology which is able to efficiently explore an optimum design case and to generate the accurate approximate model. Thickness sizes of main structure member were applied to the design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experiment. Best design case was also identified to improve the structure design with weight minimization. From the orthogonal array experiment results, various approximate models such as response surface model, Kriging model, Chebyshev orthogonal polynomial model, and radial basis function based neural network model were generated. The experiment results from orthogonal array method were validated by the approximate modeling results. It was found that the radial basis function based neural network model among the approximate models was able to approximate the design space of the active type DSF with the highest accuracy.

Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method (직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가)

  • Lee, Dong-Jun;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

Application of time series based damage detection algorithms to the benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan

  • Noh, Hae Young;Nair, Krishnan K.;Kiremidjian, Anne S.;Loh, C.H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-117
    • /
    • 2009
  • In this paper, the time series based damage detection algorithms developed by Nair, et al. (2006) and Nair and Kiremidjian (2007) are applied to the benchmark experimental data from the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Both acceleration and strain data are analyzed. The data are modeled as autoregressive (AR) processes, and damage sensitive features (DSF) and feature vectors are defined in terms of the first three AR coefficients. In the first algorithm developed by Nair, et al. (2006), hypothesis tests using the t-statistic are applied to evaluate the damaged state. A damage measure (DM) is defined to measure the damage extent. The results show that the DSF's from the acceleration data can detect damage while the DSF from the strain data can be used to localize the damage. The DM can be used for damage quantification. In the second algorithm developed by Nair and Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to model the feature vector, and the Mahalanobis distance is defined to measure damage extent. Additional distance measures are defined and applied in this paper to quantify damage. The results show that damage measures can be used to detect, quantify, and localize the damage for the high intensity and the bidirectional loading cases.

Numerical Analysis for Spray Combustion Considering Droplet Heating (액적 가열을 고려한 분무 연소의 수치 해석)

  • Sung Hyunggun;Jeong Daekwon;Lee Sangmyeong;Roh Taeseong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.208-211
    • /
    • 2005
  • In order to provide a useful data of combustion chamber design, a numerical analysis for spray combustion of fuel and oxidizer in combustion chamber has been conducted. As a spray model, the DSF model and the Euler-Lagrange scheme have been used. The change of droplet temperature has been calculated considering droplet heating. The coupling effects between and the gas phase the droplets, and between the gas phase and the evaporated vapor have been calculated using the PSIC model.

  • PDF

Heading date and final Leaf Number as Affected by Sowing Date and Prediction of Heading Date Based on Leaf Appearance Model in Rice (벼 파종기에 따른 출수기 및 최종 엽수 변화와 출엽 모델에 의한 출수기 예측)

  • 이충근;이변우;신진철;윤영환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • Sowing date experiments were carried out by employing a rice variety "Kwanganbyeo" in both field and phytotron with natural daylength. In phytotron, temperatures were controlled at daily mean of 21$^{\circ}C$ and 24$^{\circ}C$. The responses of final leaf number and beading date were analyzed in relation to daylength during photo-sensitive period (PSP). Based on the component models predicting the final leaf number and leaf appearance rate, a rice phenology model was established and verified. Days from sowing to flowering (DSF) were shortened and final number of leaves (FNL) increased as sowing dates were delayed from 25 April to 5 June in field and phytotron. The increased leaf appearance rate (LAR) and the reduced FNL, respectively, due to the higher temperature and the shorter daylength in delayed sowings in the field brought about greater shortening of DSF than in the phytotron where only FNL was reduced by shorter daylength in delayed sewings. FNL showed very close relationship with the average daylength during PSP of six-leaf stage to panicle initiation, being well fitted to the following rational function ($R^2$=0.98):(equation omitted) where D is daylength and a, b, and c are the constants that were estimated as 14.694, -0.992, and -0.068 in Kwanganbyeo, respectively. The rice phonology model, which was composed of two component models for LAR and FNL, predicted DSF very accurately. The differences between the observed and predicted DSF was less than two days in the sewing date field experiments in 1999 and 2000 of which data were not used for the model construction.struction.

  • PDF

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF