• Title/Summary/Keyword: DSBs

Search Result 30, Processing Time 0.027 seconds

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Effect of Paternal DNA Damage on Paternal DNA Degradation and Early Embryonic Development in Mouse Embryo: Supporting Evidence by GammaH2AX Expression (마우스 수정란에 있어서 부계 DNA 손상이 부계 DNA 퇴화 및 초기 배발달에 미치는 영향)

  • Kim, Chang Jin;Lee, Kyung-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.

Significance of ATM Gene Polymorphisms in Chronic Myeloid Leukemia - a Case Control Study from India

  • Gorre, Manjula;Mohandas, Prajitha Edathara;Kagita, Sailaja;Cingeetham, Anuradha;Vuree, Sugunakar;Jarjapu, Sarika;Nanchari, Santhoshirani;Meka, Phanni Bhushann;Annamaneni, Sandhya;Dunna, Nageswara Rao;Digumarti, Raghunadharao;Satti, Vishnupriya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.815-821
    • /
    • 2016
  • Background: Development of chronic myeloid leukemia (CML) involves formation of double strand breaks (DSBs) which are initially sensed by the ataxia telangiectasia mutated (ATM) signal kinase to induce a DNA damage response (DDR). Mutations or single nucleotide polymorphisms in ATM gene are known to influence the signaling capacity resulting in susceptibility to certain genetic diseases such as cancers. Materials and Methods: In the present study, we have analyzed -5144A>T (rs228589) and C4138T (rs3092856) polymorphisms of theATM gene through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 925 subjects (476 CML cases and 449 controls). Results: The A allele of -5144A>T polymorphism and T allele of C4138T polymorphism which were known to be influencing ATM signaling capacity are significantly associated with enhanced risk for CML independently and also in combination (evident from the haplotype and diplotype analyses). Significant elevation in the frequencies of both the risk alleles among high risk groups under European Treatment and Outcome Study (EUTOS) score suggests the possible role of these polymorphisms in predicting the prognosis of CML patients. Conclusions: This study provides the first evidence of association of functional ATM gene polymorphisms with the increased risk of CML development as well as progression.

Association of RAD 51 135 G/C, 172 G/T and XRCC3 Thr241Met Gene Polymorphisms with Increased Risk of Head and Neck Cancer

  • Kayani, Mahmood Akhtar;Khan, Sumeera;Baig, Ruqia Mehmood;Mahjabeen, Ishrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10457-10462
    • /
    • 2015
  • Homologous recombination repair (HRR) plays an important role in protection against carcinogenic factors. Genes regulating the HRR mechanisms may impair their functions and consequently result in increased cancer susceptibility. RAD 51 and XRCC3 are key regulators of the HRR pathway and genetic variability in these may contribute to the appearance and progression of various cancers including head and neck cancer (HNC). The aim of the present study was to compare the distribution of genotypes of RAD51 (135G/C, 172 G/T) and XRCC3 (Thr241Met) polymorphisms between HNC patients and controls. Each polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymerase (PCR-RFLP) technique in 200 pathologically confirmed HNC patients along with 150 blood samples from normal, disease free healthy individuals. We observed that homozygous variant CC genotype of RAD51 135G/C was associated with a 2.5 fold increased HNC risk (OR=2.5; 95%CI=0.69-9.53; p<0.02), while second polymorphism of RAD 51 172 G/T, heterozygous variant GT genotype was associated with a 1.68 fold (OR=1.68; 95%CI=1.08-2.61; p<0.02) elevation when compared with controls. In the case of the Thr241Met polymorphism of XRCC3, we observed a 16 fold (OR=16; 95% CI=3.78-69.67; p<0.0002) increased HNC risk in patients compared to controls. These results further suggested that RAD51 (135G/C, 172 G/T) and XRCC3 (Thr241Met) polymorphisms may be effective biomarkers for genetic susceptibility to HNC. Larger studies are needed to confirm our findings and identify the underlying mechanisms.

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

Ser1778 of 53BP1 Plays a Role in DNA Double-strand Break Repairs

  • Lee, Jung-Hee;Cheong, Hyang-Min;Kang, Mi-Young;Kim, Sang-Young;Kang, Yoon-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • 53BP1 is an important genome stability regulator, which protects cells against double-strand breaks. Following DNA damage, 53BP1 is rapidly recruited to sites of DNA breakage, along with other DNA damage response proteins, including ${\gamma}$-H2AX, MDC1, and BRCA1. The recruitment of 53BP1 requires a tandem Tudor fold which associates with methylated histones H3 and H4. It has already been determined that the majority of DNA damage response proteins are phosphorylated by ATM and/or ATR after DNA damage, and then recruited to the break sites. 53BP1 is also phosphorylated at several sites, like other proteins after DNA damage, but this phosphorylation is not critically relevant to recruitment or repair processes. In this study, we evaluated the functions of phosphor-53BP1 and the role of the BRCT domain of 53BP1 in DNA repair. From our data, we were able to detect differences in the phosphorylation patterns in Ser25 and Ser1778 of 53BP1 after neocarzinostatin-induced DNA damage. Furthermore, the foci formation patterns in both phosphorylation sites of 53BP1 also evidenced sizeable differences following DNA damage. From our results, we concluded that each phosphoryaltion site of 53BP1 performs different roles, and Ser1778 is more important than Ser25 in the process of DNA repair.

A Yeast MRE3/REC114 Gene is Essential for Normal Cell Growth and Meiotic Recombination

  • Leem, Sun-Hee
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.248-255
    • /
    • 1999
  • We have analyzed the MRE3/REC114 gene of Saccharomyces cerevisiae, previously detected in isolation of mutants defective in meiotic recombination. We cloned the MRE3/REC114 gene by complementation of the meiotic recombination defect and it has been mapped to chormosome XIII. The DNA sequence analysis revealed that the MRE3 gene is identical to the REC114 gene. The upstream region of the MRE3/REC114 gene contains a T_4C site, a URS (upstream repression sequence) and a TR (T-rich) box-like sequence, which reside upstream of many meiotic genes. Coincidentally, northern blot analysis indicated that the three sizes of MRE3/REC114 transcripts, 3.4, 1.4 and 1.2 kb, are induced in meiosis. A less abundant transcript of 1.4 kb is detected in both mitotic and meiotic cells, suggesting that it is needed in mitosis as well as meiosis. To examine the role of the MRE3/REC114 gene, we constructed mre3 disruption mutants. Strains carrying an insertion or null deletion of the MRE3/REC114 gene showed slow growth in nutrient medium and the doubling time of these cells increased approximately by 2-fond compared to the wild-type strain. Moreover, the deletion mutant (${\delta}$mre3) displayed no meiotically induced recombination and no viable spores. The mre3/rec114 spore lethality can be suppressed by spo13, a mutation that causes cells to bypass reductional division. The double-stranded breaks (DSBs) which are involved in initiation of meiotic recombination were not detected in the analysis of meiotic chromosomal DNA from the mre3/rec114 disruptant. From these results we suggest that the MRE3/REC114 gene product is essential in normal growth and in early meiotic stages involved in meiotic recombination.

  • PDF

DNA Ligase4 as a Prognostic Marker in Nasopharyngeal Cancer Patients Treated with Radiotherapy

  • Kim, Dong Hyun;Oh, Sung Yong;Kim, So Yeon;Lee, Seul;Koh, Myeong Seok;Lee, Ji Hyun;Lee, Suee;Kim, Sung-Hyun;Park, Heon Soo;Hur, Won Joo;Jeong, Jin Sook;Ju, Mi Ha;Seol, Young Mi;Choi, Young-Jin;Chung, Joo Seop;Kim, Hyo-Jin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10985-10989
    • /
    • 2015
  • Background: The capability for DNA double-strand breaks (DSBs) repair is crucial for inherent radiosensitivity of tumor and normal cells. We have investigated the clinicopathologic significance of DNA repair gene expression in nasopharyngeal (NP) carcinoma. Materials and Methods: A total of 65 NP cancer patients who received radiotherapy were included. The immunopositivity to Ku 70, DNA-PKcs, MRN, RAD50, XRCC4, and LIG4 were examined in all tumor tissues. Results: The patients comprised 42 males and 23 females, with a median age of 56 years (range, 18-84). The expression levels of RAD50 (0,+1,+2,+3) were 27.7%, 32.3%, 21.5%, and 18.5%. LIG4 (${\pm}$) were 43.1% and 56.9% respectively. The 5-year OS rate of patients with LIG4 (${\pm}$) were 90% and 67.9%, respectively (p=0.035). The 5-year TTP rate of patients with LIG4 (${\pm}$) were 75.9%, 55.5%, respectively (P=0.039). Conclusions: Our results suggest the possibility of predicting the radiosensitivity of NP cancer by performing immunohistochemical analysis of LIG4.

Meta-analysis of Associations between ATM Asp1853Asn and TP53 Arg72Pro Polymorphisms and Adverse Effects of Cancer Radiotherapy

  • Su, Meng;Yin, Zhi-Hua;Wu, Wei;Li, Xue-Lian;Zhou, Bao-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10675-10681
    • /
    • 2015
  • Background: The ataxia telangiectasia mutated (ATM) protein and p53 play key roles in sensing and repairing radiation-induced DNA double strand breaks (DSBs). Accumulating epidemiological evidence indicates that functional genetic variants in ATM and TP53 genes may have an impact on the risk of radiotherapy-induced side effects. Here we performed a meta-analysis to investigate the potential interaction between ATM Asp1853Asn and TP53 polymorphisms and risk of radiotherapy-induced adverse effects quantitatively. Materials and Methods: Relevant articles were retrieved from PubMed, ISI Web of Science and the China National Knowledge Infrastructure (CNKI) databases. Eligible studies were selected according to specific inclusion and exclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were pooled to estimate the association between ATM Asp1853Asn and TP53 Arg72Pro polymorphisms and risk of radiotherapy adverse effects. All analyses were performed using the Stata software. Results: A total of twenty articles were included in the present analysis. In the overall analysis, no significant associations between ATM Asp1853Asn and TP53 Arg72Pro polymorphisms and the risk of radiotherapy adverse effects were found. We conducted subgroup analysis stratified by type of cancer, region and time of appearance of side effects subsequently. No significant association between ATM Asp1853Asn and risk of radiotherapy adverse effects was found in any subgroup analysis. For TP53 Arg72Pro, variant C allele was associated with decreased radiotherapy adverse effects risk among Asian cancer patients in the stratified analysis by region (OR=0.71, 95%CI: 0.54-0.93, p=0.012). No significant results were found in the subgroup analysis of tumor type and time of appearance of side effects. Conclusions: The TP53 Arg72Pro C allele might be a protective factor of radiotherapy-induced adverse effects among cancer patients from Asia. Further studies that take into consideration treatment-related factors and patient lifestyle including environmental exposures are warranted.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.