• Title/Summary/Keyword: DS RNA

Search Result 183, Processing Time 0.022 seconds

Peucedanum japonicum Thunberg Leaf Alleviates the Symptoms of Dextran Sulfate Sodium Induced Ulcerative Colitis in Mice (식방풍 잎의 DSS로 유도한 궤양성 대장염 완화 효과)

  • Jung, Ho-Kyung;Jung, Won-Seok;Ahn, Byung-Kwan;Kang, Byoung-Man;Yeo, Jun-Hwan;Cha, Seon-Woo;Park, Chun-Geon;Cho, Jung-Hee;Cho, Hyun-Woo
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.421-428
    • /
    • 2014
  • In general, Reucedani Radix (Peucedanum japonicum Thunbergis: PJ) is the Korean traditional herbal medicine used to remove dampness, to relieve pain, and spasm. So, PJ folium is believed to have the same effects. The aim of this study is to investigate the alleviation of dextran sulfate sodium (DSS) induced ulcerative colitis in mice by PJ folium. 25 mice were divided into 5 groups: normal, DSS, DSS + 100 mg/kg PJ folium (PJ100), DSS + 500 mg/kg PJ folium (PJ500), and DSS + 150 mg/kg 5-amino salicylic acid (5-ASA) groups. Body weights, colon lengths, histological changes in colon tissue, and spleen weights were observed. Inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ level in plasma were measured by ELISA. IL-$1{\beta}$, IL-6, and TNF-a mRNA expression in colon tissue were detected by RT-PCR. In the results, body weight lose was inhibited in PJ100, PJ500, and 5-ASA groups, but it was not different compared with DSS group, significantly. PJ500 group showed the preventive effects of colon length shorten and histological changes in colon tissues as good as 5-ASA group. The weight of spleen was increased in DSS group but it reduced in PJ100, PJ500, and 5-ASA groups. Moreover, IL-$1{\beta}$ and TNF-${\alpha}$ cytokine levels in plasma were reduced in PJ500 and 5-ASA groups. IL-$1{\beta}$, IL-6, and TNF-a mRNA expression in colon tissue were inhibited in PJ100, PJ500, and 5-ASA groups and it was significantly different compared with DSS group. In conclusion, PJ folium showed the alleviative effect on DSS induced ulcerative colitis in mice.

Characterization of Grapevine leafroll-assoiated virus 1 and Grapevine leafroll-associated virus 3 isolated from Vitaceae in Korea.

  • Kim, Hyun-Ran;Lee, Sin-Ho;Kim, Jae-Hyun;Yoon, Gum-Ook;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.138.2-139
    • /
    • 2003
  • Grapevine leafroll-associated 1 virus (GLRaV-1) and Grapevine leafroll-associated 3 virus (GLRaV-3), member of the genus Ampelovirus, are important viral disease of grapevine in the world. these viruses transmitted only dicotyledonous host by vectors such as mealybugs and there is no suitable herbaceous host for virus. The diseased leaves turn yellowish or reddish depending on cultivars and viruses. Viruses are existed at low concentration and ununiformly distribution in grapevine. Using small-scale double-stranded RNA (dsRNA) extraction method, reverse transcription and polymerase chain reaction (RT-PCR) product of 1Kb long which encoded of coat protein (CP) gene for both viruses was successfully amplified with a specific primers. The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined from selected recombinant cDNA clones. Sequence analysis revealed that the CP of GLRaV-1 consisted of 969 nucleotide, which encoded 323 amino acid residues and CP of GLRaV-3 consisted of 942 nucleotide, which encoded 314 amino acid residues. The CP of GLRaV-1 and GLRaV-3 has 93.8% and 98.7% amino acid sequence identities, respectively.

  • PDF

Characterization of birnavirus isolated from cultured flounder fry (양식 넙치 치어에서 분리한 birnavirus의 특성)

  • Sohn, Sang-Gyu;Park, Myoung-Ae;Do, Jeong-Wan;Jung, Cho-Rok;Park, Jeong-Woo
    • Journal of fish pathology
    • /
    • v.8 no.2
    • /
    • pp.91-98
    • /
    • 1995
  • During 1993 and 1994, some mortalities of flounder(Paralichthy olivaceus) fry were recorded in several fish farms and viruses were isolated from 3 of the farms. Electron microscopic examination revealed that the virus particles were hexagonal and unenveloped with an average diameter of 50 to 55nm. Serological and molecular properties of these isolates were examined. The viral RNA and polypeptides patterns on electrophoresis, as well as neutralization test results, showed that these isolates were birnaviruses and two were closely related to infectious pancreatic necrosis virus(IPNV) serotype AB and one was to IPNV serotype SP. This is the first isolation of birnaviruses from marine fish in Korea.

  • PDF

Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

  • Rahimi-Midani, Aryan;Kim, Kyoung-Ho;Lee, Seon-Woo;Jung, Sang Bong;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.584-588
    • /
    • 2016
  • Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of $100{\pm}5nm$ and tail of $200{\pm}5nm$, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene). Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

Attenuated Expression of Interferon-induced Protein Kinase PKR in a Simian Cell Devoid of Type I Interferons

  • Park, Se-Hoon;Choi, Jaydo;Kang, Ju-Il;Choi, Sang-Yun;Hwang, Soon-Bong;Kim, Jungsuh P.;Ahn, Byung-Yoon
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • The interferon-induced, double-stranded RNA (dsRNA)-dependent protein kinase PKR plays a key role in interferon-mediated host defense against viral infection, and is implicated in cellular transformation and apoptosis. We have isolated a cDNA of simian PKR encoding a product with 83% amino acid identity to the human homolog and showed that PKR expression is significantly attenuated in the Vero E6 African green monkey kidney cells devoid of type I interferon genes. A variant form of PKR lacking the exon 12 in the kinase domain is produced in these cells, presumably from an alternatively spliced transcript. Unlike wild type PKR, the variant protein named PKR-${\Delta}E12$ is incapable of auto-phosphorylation and phosphorylation of eIF2-${\alpha}$, indicating that the kinase sub-domains III and IV embedded in exon 12 are indispensable for catalytic function. PKR-${\Delta}E12$ had no dominant negative effect but was weakly phosphorylated in trans by wild type PKR.

The Non-Canonical Effect of N-Acetyl-D-Glucosamine Kinase on the Formation of Neuronal Dendrites

  • Lee, HyunSook;Cho, Sun-Jung;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.248-256
    • /
    • 2014
  • N-acetylglucosamine kinase (GlcNAc kinase or NAGK; EC 2.7.1.59) is a N-acetylhexosamine kinase that belong to the sugar kinase/heat shock protein 70/actin superfamily. In this study, we investigated both the expression and function of NAGK in neurons. Immunohistochemistry of rat brain sections showed that NAGK was expressed at high levels in neurons but at low levels in astrocytes. Immunocytochemistry of rat hippocampal dissociate cultures confirmed these findings and showed that NAGK was also expressed at low levels in oligodendrocytes. Furthermore, several NAGK clusters were observed in the nucleoplasm of both neuron and glia. The overexpression of EGFP- or RFP (DsRed2)-tagged NAGK in rat hippocampal neurons (DIV 5-9) increased the complexity of dendritic architecture by increasing the numbers of primary dendrites and dendritic branches. In contrast, knockdown of NAGK by shRNA resulted in dendrite degeneration, and this was prevented by the co-expression of RFP-tagged NAGK. These results suggest that the upregulation of dendritic complexity is a non-canonical function of NAGK.

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.

Ribosomal Protein L19 and L22 Modulate TLR3 Signaling

  • Yang, Eun-Jeong;Seo, Jin-Won;Choi, In-Hong
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • Background: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA) and induces inflammation. In this study we attempted to ascertain if there are endogenous host molecules controlling the production of cytokines and chemokines. Two candidates, ribosomal protein L19 and L22, were analyzed to determine if they influence cytokine production followed by TLR3 activation. In this study we report that L19 acts upon production of IP-10 or IL-8 differently in glioblastoma cells. Methods: L19 or L22 was transfected into HEK293-TLR3, A549 or A172 cells. After treatment with several inhibitors of NF-${\kappa}B$, PI3K, p38 or ERK, production of IL-8 or IP-10 was measured by ELISA. siRNA was introduced to suppress expression of L19. After Vesicular stomatitis virus infection, viral multiplication was measured by western blot. Results: L19 increased ERK activation to produce IL-8. In A172 cells, in which TLR3 is expressed at endosomes, L19 inhibited interferon regulatory factor 3 (IRF3) activation and IP-10 production to facilitate viral multiplication, whereas L19 inhibited viral multiplication in A549 cells bearing TLR3 on their cell membrane. Conclusion: Our results suggest that L19 regulates TLR3 signaling, which is cell type specific and may be involved in pathogenesis of autoimmune diseases and chronic inflammatory diseases.

Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis

  • Ding, He;Gong, Pengtao;Yang, Ju;Li, Jianhua;Li, He;Zhang, Guocai;Zhang, Xichen
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.121-128
    • /
    • 2017
  • Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected ($V^+$) and uninfected ($V^-$) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in $V^+$ compared with $V^-$ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in $V^+$ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in $V^+$ and $V^-$ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs

  • Fang, Ying;Choi, Jae Young;Park, Dong Hwan;Park, Min Gu;Kim, Jun Young;Wang, Minghui;Kim, Hyun Ji;Kim, Woo Jin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.280-288
    • /
    • 2020
  • RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.