• Title/Summary/Keyword: DROS SQUID

Search Result 29, Processing Time 0.023 seconds

Noise Characteristics of 64-channel 2nd-order DROS Gradiometer System inside a Poorly Magnetically-shielded Room (저성능 자기차폐실에서 64채널 DROS 2차 미분계 시스템의 잡음 특성)

  • Kim, J.M.;Lee, Y.H.;Yu, K.K.;Kim, K.;Kwon, H.;Park, Y.K.;Sasada, Ichiro
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • We have developed a second-order double relaxation oscillation SQUID(DROS) gradiometer with a baseline of 35 mm, and constructed a poorly magnetically-shielded room(MSR) with an aluminum layer and permalloy layers for magnetocardiography(MCG). The 2nd-order DROS gradiometer has a noise level of 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz inside the heavily-shielded MSR with a shielding factor of $10^3$ at 1 Hz and $10^4-10^5$ at 100 Hz. The poorly-shielded MSR, built of a 12-mm-thick aluminum layer and 4-6 permalloy layers of 0.35 mm thickness, is 2.4mx2.4mx2.4m in size, and has a shielding factor of 40 at 1 Hz, $10^4$ at 100 Hz. Our 64-channel second-order gradiometer MCG system consists of 64 2nd-order DROS gradiometers, flux-locked loop electronics, and analog signal processors. With the 2nd-order DROS gradiometers and flux-locked loop electronics installed inside the poorly-shielded MSR, and with the analog signal processor installed outside it, the noise level was measured to be 20 $fT/{\surd}Hz$ at 1 Hz and 8 $fT/{\surd}Hz$ at 200 Hz on the average even though the MSR door is open. This result leads to a low noise level, low enough to obtain a human MCG at the same level as that measured in the heavily-shielded MSR. However, filters or active shielding is needed fur clear MCG when there is large low-frequency noise from heavy air conditioning or large ac power consumption near the poorly-shielded MSR.

  • PDF

Wide-bandwidth SQUID Current Amplifier and Control Electronics for X-ray Microcalorimeter (X-선 미소열량계 신호 검출을 위한 광대역 SQUID 전류증폭기와 조절 회로)

  • 김진목;이용호;권혁찬;김기웅;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • Wide-bandwidth SQUID current amplifier and its control electronics have been constructed for detecting pulse outputs of a superconducting microcalorimeter. The current amplifier made of a double relaxation oscillation SQUID (DROS) has a bandwidth of 1.2 MHz and typical white noise level of about 6 pA/(equation omitted) Hz. To increase the dynamic range of the current amplifier, the flux-locked loop (FLL) has additional circuits to reset the integrator and to count reset numbers which present the number of passed flux quanta. In this system, dynamic range covers from -65 mA to +65 mA. SQUID electronics are controlled by software to get the optimum FLL condition, and to control the current to bias the transition edge sensor (TES). The electronics are shielded from the outside electromagnetic noises by using an aluminum case of 66 mm ${\times}$ 25 mm ${\times}$ 100 mm, and consist of 2 separate printed-circuit-boards for the current amplifier and the control electronics, respectively. The SQUID current amplifier and its control electronics will be used in TESs for detecting photons such as UV and X-ray with high energy resolution.

  • PDF

Construction and Operation of a 40-channel SQUID System for Neuromagnetic Measurements (40-채널 SQUID 시스템의 제작 및 뇌자도 측정)

  • Lee, Yong-Ho;Kim, Jin-Mok;Kwon, Hyuk-Chan;Lee, Sang-Kil;Lim, Cheong-Moo;Park, Yong-Ki;Park, Jong-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.27-32
    • /
    • 1999
  • We developed a 40-channel superconducting quantum interference device (SQUID) system for neuromagnetic measurements. The main features of the system are use of double relaxation oscillation SQUID (DROS), and planar gradiometer for measuring tangential field components. The DROSS with high flux-to-voltage transfers enabled direct readout of the SQUID output by room-temperature electronics and simple flux-locked loop circuits could be used for SQUID operation. The pickup coil is an integrated first-order planar gradiometer with a baseline of 40 mm. The average noise of the 40 channels is around 1.2 fT/cm/${\sqrt{Hz}}$ at 100 Hz, corresponding to the field noise of 5 fT/${\sqrt{Hz}}$ at 100 Hz, operated inside a magnetically shielded room. The 40-Channel system was applied to measure auditory-evoked neuromagnetic fields.

  • PDF

A Helmet-type MEG System with $1^{st}$ order SQUID Gradiometer Located in Vacuum (진공조에 위치한 1차 SQUID 미분계를 이용한 헬멧형 뇌자도 장치의 제작)

  • Yu, K.K.;Kim, K.;Lee, Y.H.;Kim, J.M.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.78-82
    • /
    • 2009
  • We have fabricated a helmet type magnetoencephalogrphy(MEG) with a $1^{st}$ order gradiometer in vacuum to improve the signal-to-noise ratio(SNR) and the boil-off rate of liquid helium(LHe). The axial type first-order gradiometer was fabricated with a double relaxation oscillation SQUID(DROS) sensor which was directly connected with a pickup coil. The neck space of LHe dewar was made to be smaller than that of a conventional dewar, but the LHe boil-off ratio appeared to increase. To reduce the temperature of low Tc SQUID sensor and pickup coil to 9 K, a metal shield made of, such as copper, brass or aluminum, have been usually used for thermal transmission. But the metal shield exhibited high thermal noise and eddy current fluctuation. We quantified the thermal noise and the eddy current fluctuation of metal. In this experiment, we used the bobbin which was made of an alumina to wind Nb superconductive wire for pickup coil and the average noise of coil-in-vacuum type MEG system was $3.5fT/Hz^{1/2}$. Finally, we measured the auditory evoked signal to prove the reliability of coil-in-vacuum type MEG system.

  • PDF

Review of SQUID Sensors for Measuring Magnetocardiography (심자도 측정을 위한 SQUID 센서 기술의 개발 현황)

  • Lee, Y.H.;Kim, J.M.;Yu, K.K.;Kim, K.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.

A SQUID MEG Study on the Auditory Primary Response induced by Acupuncture on TE5 (Waiguan).GB43 (Xiaxi) (외관(外關)(TE5).협계(俠谿)(GB43) 자침이 SQUID로 측정한 뇌 청각영역의 뇌자도(腦磁圖) 변화에 미치는 영향)

  • Choi Chan-Hun;Ra Ki-Uung;Jang Kyeong-Seon;Na Chang-Su
    • Korean Journal of Acupuncture
    • /
    • v.23 no.4
    • /
    • pp.135-145
    • /
    • 2006
  • Objectives and Methods : Using the 2-channel DROS SQUID (Korea Research Institute of Standards of Science, 1999), the present study was carried out to record changes elicited in the auditory cortex by acupuncture stimulus on right TE5 (Waiguan) and GB43 (Xiaxi). Needle-retention stimulation of TE5 and GB43 were done for acquiring the brain activities changed by acupuncture. Acupoint TE5 and GB43 is known to be effective for the treatment of ear-related disease, such as deafness and tinnitus, and to be suspected to be related to the auditory cortex. Auditory evoked magnetic fields were recorded hem the left hemisphere of five subjects, in response to contralateral ear stimulation by irregularly spaced 170 msec long 1kHz tone busts (Korea Research Institute of Standards of Science) Results and Conclusions : The result as follows. The latency and amplitude of SQUID MEG responses at the human auditory cortex changed by needle-retention condition on TE5 were 4msec and 9.2 fT, respectively, which were slower and smaller than those of no-acupuncture condition. The latency and amplitude of SQUID MEG responses at the human auditory cortex changed by needle-retention condition on GB43 were 7.2 msec and 1.6 fT, respectively, which were slower and larger than those of no-acupuncture condition. The latency of SQUID MEG responses at the human auditory cortex changed by needle-retention condition on GB43 condition was slower than that of TE5 acupuncture condition.

  • PDF

Change of Biomagnetic Field around Acupoints of Kigong Master during Qi radiation (발공중인 기공자 경혈주위의 미소자기장 관찰)

  • Jang Kyeong Seon;Choi Chan Hun;Jeong Chan Won;Lee Yoon Ho;Yoon Yoo Sik;So Cheal Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.537-541
    • /
    • 2002
  • When a Kigong master concentrates the Qi at Yintang, Laogong(P8), Qihai(CV6) meridian points during Kigong state, the change of magnetic field around acupoints Yintang, Laogong points has been measured using DROS-SQUID apparatus. After smoothing process of the continuously measured magnetic signal around acupoints for a few minutes, we could observe that a series of peaks, magnitude of 1~2 pT and period of 5 sec, appeared and find that these peaks were clearly changed as if switch on and off according to Qi concentration state. Before Qi radiation, a series of the peaks measured on Yintang or Laogong point of a Kigong master shows one of either SW-ON state or SW-OFF state as initial state. During Qi radiation, its state becomes inverse of initial state. After Qi radiation, it returns to the initial state for some cases (called P type ; push button switch type) or it remains inversion state for other cases (called T type; toggle switch type). From the data of peaks measured at different position from the Qi concentration acupoint, we found that the Qi radiation on an acupoint makes the switching effect even not at the acupoint that Qi is concentrated but at the other acupoints that Qi is not concentrated.