• Title/Summary/Keyword: DRANCO system

Search Result 2, Processing Time 0.015 seconds

A Study on the foodwaste treatment using the DRANCO system (건식단상혐기성소화조를 이용한 음식물류폐기물 처리)

  • Hong, Jong-Soon;Kim, Jae-Woo;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.49-56
    • /
    • 2008
  • Foodwaste will be able to treat is 13,000 ton/day. $18{\times}10^{13}$ won/yr are wasted with the foodwaste treatment. As a result, the initial working condition. These are given as follows : On the 1st. week, the foodwaste of the 130 ton/week(digest sludge : input foodwaste = 20 : 1) is being put into a DRANCO system by the space of 2 day. On the 2nd week, the food waste of the 130 ton/week(5 day) is being put into a DRANCO system by the space of 2 day. On the 3rd week, the foodwaste of the 130 ton/week is being put into a DRANCO system by the space of 3day. On the 4th week, the foodwaste of the 350 ton/week is being put into a DRANCO system. After that time, increase the quantity than last week is 10%. Under steady-state working condition, the methane content of the biogas is more then 55%. The $NH_3-N$ content of the digest sludge is under 3,500ppm. The VFA content of the digest sludge is under 1,500ppm. The pH is more then 8. The TS content of the digest sludge is $18{\sim}22%$. The VS content of the digest sludge is under 65%.

A study on the comparison of operation for long & short time in the Dranco process (건식단상혐기성소화조 장.단기 운영의 비교연구)

  • Hong, Jong-Soon;Kim, Jae-Woo;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.73-82
    • /
    • 2008
  • In this study, a dry single-phase anaerobic digestion process (Dranco system) was investigated to evaluate the optimum operational conditions. Several factors such as injection rate of organic waste, biogas production, $CH_4$ content in the biogas, pH of the sludge, $NH_3$-N and VFA concentration were investigated based on the operation of the digestion process for 2 months (short term) and 8 months (long-term). The operation results showed that a small quantity of food waste should be injected every week and that a 10% increase of the microorganism injection rate should be needed. However, normal operation was conducted after 11 weeks based on the designed quantity. The $CH_4$ content in the biogas was high at the beginning and the end of the food injection. However, it was low during week days. When the biogas production was high, the $CH_4$ concentration was low. The biogas production increased with an increase of the injection rate. $100m^3$/ton of biogas was produced from normal operation of the digestion process based on the designed quantity. The pH values of the digestion tank based on short-term operation ranged from 8 to 8.5. However, the pH values ranged from 7.45 to 8.15 after 4 weeks of long-term operation. The $NH_3$-N concentration of short-term operation ranged from 4,500 to 5,500 ppm and it gradually decreased to 2,000ppm after normal operation was commenced. For long-term operation, it was 5,000ppm initially and 3,800ppm after normal operation was commenced. The VFA concentration of sludge was less than 900ppm and 2,500ppm for short and long-term operations, respectively, after normal operation. Overall, the differences between sludge pH, $NH_3$-N and VFA concentrations may be due to the different types of microorganisms and the digestion ability of the microorganisms which exist in the accumulation of non digested organics. Moreover, it may be also caused by the type of food waste. Further investigation is needed to confirm these relationships.