• 제목/요약/키워드: DPF Regeneration

검색결과 62건 처리시간 0.027초

DPF내 포집된 입자상 물질의 산화율 산출을 위한 실험적 연구 (Experimental Study on Estimation of Oxidation Rate of PM inside of Diesel Particulate Filter)

  • 심범주;박경석;조규희;이형준;민병두
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.98-103
    • /
    • 2013
  • Conventional method to estimate mass of particulate matter accumulated in diesel particulate filter is to use pressure difference between upstream and downstream of the filter. Then measured pressure difference should be compared that of clean condition which is no particulate matter accumulated in DPF. During regeneration soot oxidation is also estimated by same method. This methodology, however, has demerit on accuracy because of pressure difference deviation of clean DPFs and pressure difference caused by non-carbon based PM which is different from that of caused by carbon based PM. This study suggests new methodology to estimate accumulated soot oxidation rate through exhaust gas characteristics during regeneration. Results, more high accuracy of soot oxidation was obtained by analysis of relationship between fuel mass and concentration of carbon dioxide and oxygen.

대형디젤기관에서 연속재생방식 PM저감장치장착에 따른 유동 및 성능에 관한 수치해석적 연구 (A Study on Prediction of Flow Characteristics and Performance of a Heavy-Duty Diesel Engine with Continuously Regenerating Method PM Reduction)

  • 한영출;문병철;오상기;백두성
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.52-57
    • /
    • 2005
  • The increasing automobiles continue to cause air-pollution problem s worse than ever. In fact, many automobile research are involved in how to reduce exhaust emissions effectively specially in $NO_X$ and PM to comply with stringent emission standards, Euro V. This research emphasized on the development of continuous regeneration DPF technology which was one of promising removing technology of particulate matters because of its comparability and high applicability. In addition, this research discussed on some design points of view through correlation study by com paring the experimental data with computational results by the introduction of commercial codes such as CFD-ACE+ and KIVA-3V. The numerical simulation on the performance of continuous regeneration DPF apparatus and corresponding emission characteristics has been predicted well enough and verified with experimental results. The pressure and average temperatures are decreased to about 2.6% and 1.4% respectively under a full engine load condition mainly due to back pressures raised by diesel particulate filter. Pressure, temperature and heat releasing rates tend to decrease specially at higher engine load, but they are not affected at lower engine load regions.

3L급 디젤엔진의 배압이용 DPF 매연포집량 예측에 대한 연구 (Study on Estimation of PM Mass in DPF from Pressure Drop in 3L Diesel Engine)

  • 김홍석;이진욱
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.499-504
    • /
    • 2010
  • 디젤 매연여과장치내 포집된 입자상물질의 재생 시기를 제어하기 위해서는 매연 포집량을 정확히 예측하는 것이 중요하다. 필터내 축적된 매연 포집량은 필터 전 후의 압력차와 배기유량에 의해 예측될 수 있다. 따라서 본 연구에서는 먼저, 디젤산화촉매와 디젤매연여과장치 전 후의 각각 압력차의 비로써 정의한 매연지수의 산출을 위해 효과적인 신호처리방법을 제시하였다. 이를 3L급 승용 디젤엔진에서 정상운전조건과 과도운전조건에서 비교한 결과, 매연지수와 매연 포집량에 있어서 일정 상관관계가 있음을 알 수 있었다.

버너방식 DPF 시스템의 재생과정 중 발생하는 내부 온도분포 및 온도구 배에 관한 고찰 (Considerations on the Temperature Distributions and Gradients in the Filter During Regeneration in Burner Type Diesel Particulate Trap System)

  • 박동선;김재업;김응서
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.78-84
    • /
    • 1996
  • In order to eliminate TPM(Total Particulate Matter) from a diesel engine, we designed and developed a particulate trap system using a burner, which was named as AEFR(Active Exhaust Feeding Regeneration) system. We have considered the temperature distributions and gradients in the filter being regenerated according to regeneration control schemes Ⅰ, Ⅱ and Ⅲ. Schemes Ⅲ has shown the most desirable peak temperature and temperature gradients in AFER system. Finally, it was concluded that much lower peak temperature and temperature gradients in the filter could be obtained than that of other advanced research results by our AEFR system.

  • PDF

Soot 저감을 위한 촉매 분사 최적화 방안 연구 (A Study on Optimization of Catalyst Injection Controller for Reducing Soot)

  • 김병우
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.278-284
    • /
    • 2006
  • 가솔린 엔진에 비하여 디젤 엔진은 효율성, 신뢰성, 내구성 측면에서 우수한 특성을 보유하고 있다. 그러나, 디젤 엔진의 최대 약점은 카본기 물질로 알려진 분진(PM)의 방출이다. 최근 엔진 제어와 후처리를 통하여 엄격한 규제 조항에 부합하는 커다란 기술적 발전을 이룩하였다. 보다 엄격하게 진행되고 있는 환경규제를 대응하기 위하여, 본 연구에서는 배기가스 온도 증대를 통한 PM 저감 방안에 초점을 맞추었다. PM 재생 온도를 증대시키기 위하여, DPF 필터와 DOC 전방에 HC를 분사하는 방안을 제안하였다. 본 연구를 통하여, 우리는 LPG 분사 특성을 파악할 수 있는 벤치를 제작하고 관련 DB를 구축하여 LPG 분사 최적화와 ECU 제어 로직을 정량화 할 수 있었다.

  • PDF

버너방식 DPF 시스템에서 가스온도 제어를 통한 입자상물질 연소율제어의 실험적 검증 (An Experimental Study on the Control of the Combustion Rate by Temperature Control of Gas Entrained into the Filter in Burner-Type Particulate Trap)

  • 박동선;김재업;조훈;김응서
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.130-141
    • /
    • 1997
  • Work on the reduction of particulate matter(PM) from a diesel vehicl has led to a new trp system and a control method to control the combustion rate of the PM filtrated in the trap, which was named as 'Active Exhaust Feeding Regeneration(AEFR) System' by its operation mechanism. Ceramic cordierite filter is a major component of the trap and susceptible to thermal shock. Therefore the system should be designed to reduce the peak temperature and temperature gradients in the trap ; these have been considered to be the main factors causing thermal shock of the filter during the regeneration. It uses the engine's exhaust gas partially for the regeneration of the ceramic filter. It controlled bypass flow rate of the engine's exhaust gas precisely to control the temperature of the gas entrained into the filter. Gas temperatures were measured inside filter, and the oxygen concentration at the outlet of the filter was also monitored during the regeneration to analyze the combustion process of the PM. The temperature distributions and temperature gradients in the filter during the regeneration varied widely according to the regeneration control schemes. Finally, this system shows relatively low peak temperature and temperature gradients in the filter during its regeneration. It is considered that this system uses a mew method to control the combustion rate of the PM, which is different from the methods used in the previous studies.

  • PDF

후처리장치 부착에 따른 대형디젤엔진의 입자 배출특성 (Particle Emission Characteristics of Heavy-duty Diesel Engine using Aftertreatment Systems)

  • 권상일;박용희
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.146-151
    • /
    • 2012
  • This study was primarily focused on the experimental comparison of the particle emission characteristics for heavy duty engine. PM and particle number from various heavy duty engines and DPF type were analyzed with a golden particle measurement system recommended by the Particle Measurement Program. And the repeatability and reproducibility between test mode was analyzed. This study was conducted for the experimental comparison on particulate emission characteristics between the European and World-Harmonized test cycles for a heavy-duty diesel engine. To verify the particulate mass and particle number concentrations from various operating modes, ETC/ESC and WHTC/WHSC, both of which will be enacted in Euro VI emission legislation, were evaluated. Real-time particle formation of the transient cycles ETC and WHTC were strongly correlated with engine operating conditions and after-treatment device temperature. A higher particle number concentration during the ESC mode was ascribed to passive DPF regeneration and the thermal release of low volatile particles at high exhaust temperature conditions.

승용 디젤 엔진의 후처리 시스템 적용에 따른 나노입자 배출 맵 구축 및 저감특성에 관한 연구 (Study of Particle Emission Contour Construction & Characteristics and Reduction Efficiency of Exhaust-Treatment System of Diesel Engine)

  • 고아현;황인구;명차리;박심수;최회명
    • 대한기계학회논문집B
    • /
    • 제34권8호
    • /
    • pp.755-760
    • /
    • 2010
  • 본 연구는 승용 디젤엔진의 입자상 물질 배출특성에 관한 것으로써, 엔진에서 배출된 입자상 물질이 배기관 및 후처리장치인 디젤산화촉매와 매연여과장치를 통과할 때의 특성 변화를 파악하기 위하여 후처리장치 각각 전 후단 및 배기관에서 직접 측정하였다. 또한 다양한 엔진회전속도 및 부하조건에서 측정함으로써 입자상 물질 배출 맵을 구축하였으며, 디젤산화촉매 및 매연여과장치의 입자상 물질 저감효과에 대해 평가하였다. 뿐만 아니라 배기재순환율과 연료분사시기를 변경시켜 입자상 물질의 배출특성 변화를 파악하였다. 모든 시험에서 입자상 물질을 5~1000nm 크기까지 측정할 수 있는 DMS500을 이용하였다.

배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System)

  • 조용석;이성욱;이정섭;윤여빈;박영준
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.

INVESTIGATION OF SOOT OXIDATION CHARACTERISTICS IN A SIMULATED DIESEL PARTICULATE FILTER

  • Lee, H.S.;Chun, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.261-267
    • /
    • 2006
  • Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Carbon oxidation characteristics were investigated by temperature programmed oxidation(TPO) method as well as constant temperature oxidation(CTO) with a flow reactor including porous bed. The activation energy of carbon oxidation was increasing with temperature and had two different constant values in the early and the later stage of the oxidation process respectively in TPO experiment. Kinetic constants were derived and the reaction mechanisms were assumed from the experimental results and a simple reaction scheme was proposed, which approximately predicted the overall oxidation process in TPO as well as CTO.