• Title/Summary/Keyword: DPF (diesel particulate filter)

Search Result 120, Processing Time 0.028 seconds

An Electrostatic Diesel Particulate Filtration System for Removal of Fine Particulate Matters from Marine Diesel Engines (선박 디젤엔진 배출 미세먼지 저감을 위한 정전 여과 매연 집진기 개발에 관한 연구)

  • Younghun Kim;Gunhee Lee;Kee-Jung Hong;Yong-Jin Kim;Hak-Jun Kim;Inyong Park;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.101-110
    • /
    • 2023
  • In order to reduce particulate matters (PM) from marine diesel engines, we developed novel electrostatic diesel particulate matter filtration system. Electrostatic diesel particulate filtration (DPF) system consists of electrostatic charger and filtration part. The electrostatic charger and filtration part are composed of a metal discharge electrode and a metal fiber filter (porosity: 68.1-86.1%), respectively. In the electrostatic charger part, diesel soot particles are reduced by electrostatic force. The filtration part after electrostatic charger part reduces diesel soot particles through inertial and diffusion forces. The filtration efficiency of electrostatic DPF system was examined through the experiments using engine dynamometer system (300 kW) and ship (200 kW). The PM reduction efficiencies due to inertial and electrostatic forces showed about 70-75% and 80-90%, respectively, according to the RPM of the engine. The differential pressure of the electrostatic DPF system applied to the ship was about 1-9 mbar, which was less than the allowable differential pressure for ship engines in South Korea (100 mbar). The results show that the electrostatic DPF system is suitable for application to the PM reduction emitted from ships.

Characteristics of the Car Fires Related to a Diesel Particulate Filters and an Analysis of the Process of Proving Fire Causes (미세먼지 저감 장치와 관련된 자동차화재의 특징 및 화재원인 입증절차의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.99-107
    • /
    • 2018
  • Diesel cars employ a diesel particulate filter (DPF) to reduce the discharge of fine dust. However, cases of fires caused by DPFs have been reported in diesel cars. In this study, I examined the regulation of exhaust gas and exhaust gas recirculation in diesel cars. Then, I analyzed cases of car fires caused by DPFs, their characteristics, car fire factors related to DPFs and preventive measures, and their consideration in investigations of the causes of fires. Finally, regarding car fire investigations, this study proposed a process of proving that fires are caused by DPFs.

Experimental Study on Estimation of Oxidation Rate of PM inside of Diesel Particulate Filter (DPF내 포집된 입자상 물질의 산화율 산출을 위한 실험적 연구)

  • Shim, Beomjoo;Park, Kyoungsuk;Jo, Kyuhee;Lee, Hyeongjun;Min, Byeongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • Conventional method to estimate mass of particulate matter accumulated in diesel particulate filter is to use pressure difference between upstream and downstream of the filter. Then measured pressure difference should be compared that of clean condition which is no particulate matter accumulated in DPF. During regeneration soot oxidation is also estimated by same method. This methodology, however, has demerit on accuracy because of pressure difference deviation of clean DPFs and pressure difference caused by non-carbon based PM which is different from that of caused by carbon based PM. This study suggests new methodology to estimate accumulated soot oxidation rate through exhaust gas characteristics during regeneration. Results, more high accuracy of soot oxidation was obtained by analysis of relationship between fuel mass and concentration of carbon dioxide and oxygen.

Measurement of Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter (디젤 엔진 매연여과장치 입.출구에서의 유속 분포 측정)

  • Lee, Choong-Hoon;Choi, Ung;Bae, Sang-Hong;Lee, Su-Ryong
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.343-349
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of a DPF was measured using a Pitot tube and 2-D positioning equipment. An adaptor which was designed for accessing the Pitot tube probe into inlet of the DPF was fabricated with inlet flange of the DPF. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet of the DPF through the rectangular window of the adaptor. Automation of the velocity measurement at the inlet and exit of the DPF was effectively achieved and measuring time was reduced drastically. The flow velocity distribution at the inlet of the DPF showed parabola shape with maximum velocity near to the center of the DPF, as expected. The velocity distribution at the exit of the DPF showed crown shape, that is, the flow velocity distribution near to the center of the DPF is lower than that at surrounded peripheral region of the DPF.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

A Study on the Characteristics of Temperature Distribution according to Material and Position of Filter in a Diesel Particulate Filter (필터의 재질 및 위치에 따른 DPF 내부의 온도 분포 특성에 관한 연구)

  • Kim, Gyu-Sung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.903-909
    • /
    • 2012
  • This study analyzed the temperature distribution in DPF with five partitioned electric heaters. The temperature distribution in DPF is an important design factor for regeneration and durability of filter. The design Factors that influence the temperature distribution in DPF there are several. In this study, the characteristics of temperature distribution in DPF were analyzed according to the following changes. First, the thermal conductivity of the filter was analyzed about effect on the durability of the filter. Second, the length from exhaust manifold to inlet of DPF was analyzed about effect on the temperature distribution in DPF. The boundary conditions of analysis has been verified with comparison to the results of existing experimental study and the numerical analysis. Based on the identified boundary condition, on assuming the condition of the actual driving, the temperature distribution in DPF was analyzed according to material properties of filter and the position of DPF.

Ceramic Diesel Particulate Filter Structure with Inclined Gas Paths

  • Hwang, Yeon;Kang, Dae-Sik;Choi, Hyoung-Gwon;Lee, Choong-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.226-230
    • /
    • 2012
  • This paper presents a novel structure for a diesel particulate filter (DPF) with inclined gas paths, which was designed so that the gas paths offered a fluent flow of exhaust gases, and particulate matter (PM) was collected at pores formed in the body. The alumina porous filter was prepared by a conventional sintering process at $1200^{\circ}C$ for 2 h. Straight gas paths with $30^{\circ}$ of inclination from the gas flow direction were formed in the filter body. It is shown that this filter structure worked as a PM filter, in which 90.2% of soot filtration efficiency and 59.6 mbar of pressure drop were achieved.

Development of a Catalytic Combustor for DPF Regeneration of In-use Light Duty Diesel Vehicles (소형 경유 운행차의 매연여과장치 재생용 촉매연소기 개발에 관한 연구)

  • Kim, Hong-Suk;Choi, Hyun-Ha;Cho, Gyu-Baek;Jeong, Young-Il;Cho, Sung-Ho;Park, Jong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.168-175
    • /
    • 2008
  • In-use light duty diesel vehicles are considered as one of major sources of particulate emissions in many cities, and the start of the retrofit program for the light duty diesel vehicles is expected in near future in Korea. One of the problems of the retrofit of the light duty diesel vehicles is that the exhaust gas temperature is too low to apply passive regeneration DPF systems. This study introduces a catalytic combustor as a new active DPF regeneration technology. This study shows the principle and characteristics of DPF regeneration by the catalytic combustor and suggests it's proper control method for better regeneration.

Evaluation and Improvement of Diesel Retrofit Program in Gyeonggi-do (경기도 운행차 저공해화 사업의 성과분석 및 발전방안)

  • Kim, Dong-Young;Choi, Min-Ae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The purpose of this study is to evaluate the diesel retrofit program which have been proceeded for the last 7 years in Gyeonggi-do. Diesel retrofit programs in Gyeonggi-do consist of the attachment of DPF (Diesel Particulate Filter), p-DPF (partial-DPF) and DOC (Diesel Oxidation Catalyst), switching to LPG engine, scraping an old cars. Emission reduction by diesel retrofit program was estimated $N_2O$ 8,313.4 ton/year, PM10 3,626.4 ton/year, VOC 8,078.5 ton/year in 2010. The benefit-cost analysis shows that the 964 billion wons of benefits are greater than the 853 billion wons of total costs. Diesel retrofit programs could be one of the most effective measures to improve PM10 concentration in metropolitan area. But retrofit programs also need to be properly maintained by each vehicle.