• Title/Summary/Keyword: DP-Steel

Search Result 111, Processing Time 0.025 seconds

Forming Limit Diagram of DP590 considering the Strain Rate (변형률속도를 고려한 DP590의 성형한계도)

  • Kim, Seok-Bong;Ahn, Kwang-Hyun;Ha, Ji-Woong;Lee, Chang-Soo;Huh, Hoon;Bok, Hyun-Ho;Moon, Man-Been
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.127-130
    • /
    • 2010
  • This paper deals with the formability of DP590 steel considering the strain rate. The strain hardening coefficient, elongation and r-value were obtained from the static and dynamic tensile test. As strain rate increases from static to 100/s, the strain hardening coefficient and the uniform elongation decrease and the elongation at fracture and r-value decrease to 0.1/s and increase again to 100/s. The high speed forming limit tests with hemi-spherical punch were carried out using the high speed crash testing machine and high speed forming jig. The high speed forming limit of DP590(order of $10^2$/s) decreases compared to the static forming limit(order of $10^{-3}$/s) and the forming limit band in high speed forming test is narrower than that in the static forming test. This tendency may be due to the development of brittleness with increase of stain rate.

Study on the Cold Formability of Drawn Non-heat Treated Steels (신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구)

  • 박경수;박용규;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.269-273
    • /
    • 2003
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

  • PDF

A Study on the Cold Formability of Drawn Dual-Phase Steels (신선 가공된 이상 조직강의 냉간 성형성에 대한 연구)

  • 박경수;최상우;이덕락;이종수
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.84-89
    • /
    • 2004
  • There is a growing interest to replace the commercial steels with non-heat treated steels, which does not involve the spheroidization and quenching-tempering treatment. However, Non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, Dual-Phase Steels were studied as candidate materials for non-heat treated steels, which have different martensite morphologies and volume fractions obtained through heat-treatment of intercritical quenching (IcQ), intermediate quenching (ImQ) and step quenching (SQ). The mechanical properties of DP steels were measured by tension and compression tests. Also, the cold formability of three DP steels which have similar tensile strength value was investigated by estimating the deformation resistance and the forming limit. The deformation resistance which is important factor in determining die life was estimated by calculating the deformation energy. And the forming limit was estimated by measuring the critical strain revealing crack initiation at the notch tip of the specimens.

Effect of Strarting Structures and Intercritical Annealing on Low Temperatures Mechanical Properties of a HSLA Steel (초기조직 및 이상역열처리가 저합금 고강도강의 저온기계적 성질에 미치는 영향)

  • Cho, H.K.;Park, K.G.;Shin, D.H.;Maeng, S.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1994
  • Austenite formation and Low temperatures mechanical properties of HSLA steel of different starting structures have been studied by intercritical annealing(IA). The different starting structures are: ferrite+pearlite(FP1), martensite(M1), cold worked ferrite+pearlite(FP2) and cold worked martensite(M2). In most cases tensile strength and elongation was increased by decreasing the testing temperatures regardless of the IA time. Tensile strength of the cold worked starting structures was higher than that of the non-cold worked starting structures. However not any noticeable difference in elongation was found between two cases. Low temperatures impact properties were affected by the starting structures. Charpy V-notch impact transition temperatures of the M-starting structures were around $-40^{\circ}C$, and those of the FP starting structures were around $-10^{\circ}C$. Impact energy was lower in the cold worked specimens than in the non-cold worked specimens at the same starting structures. DP structure obtained from the M-starting structure has shown superior low temperatures mechanical properties than the DP structure obtained from the FP-starting structure.

  • PDF

A Study on the Resistance Spot Weldability of 590 MPa Grade DP Steel with Modified Electrode Tip (가공 전극을 적용한 590 MPa급 DP강의 저항 점용접에 관한 연구)

  • Lee, Sang-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The use of advanced high-strength steels (AHSS) in automotive applications has steadily increased over the past few years. Two different failure modes are generally observed in shear-tension tests for resistance spot welds of AHSS. interfacial fractures and full button pullout. Despite high load-carrying capacity. the resistance spot welds in AHSS cue prone to interfacial fractures. To improve the load carrying ability of welds during shear-lap and cross tension tests. the tip surface of the electrode was grooved in a round shape. The electrode tip surface was modified so as to concentrate the current now in the central and circumferential portion of the electrode force. The results showed that the interfacial fracture was suppressed in welds using the modified electrode. In a comparison of failure mode during mechanical tests. the welds made with the modified electrode showed a higher tendency to fail via full button pullout fracture.

마찰교반접합공정을 적용하여 겹치기 접합을 실시한 복합조직강의 미세조직과 기계적 특성

  • Kim, Sang-Hyeok;Lee, Gwang-Jin;U, Gi-Do
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.103.1-103.1
    • /
    • 2012
  • 본 연구는 차량경량화를 위하여 높은 인장강도와 우수한 인성을 가지는 590MPa급 이상조직강(Dual phase steel)을 이용하여 1991년 TWI(The Welding Institute)에서 개발된 마찰교반접합을 적용하여 접합을 실시하였다. 접합의 공정조건으로 툴의 회전속도는 250~350 RPM, 접합속도로는 50~350 mm/min로 겹치기접합을 실시하였다. 접합에서 사용된 툴은 Megastir에서 제작한 고융점마찰교반접합용 툴인 PCBN(Q-60)을 이용하였고 연구에 사용된 DP590은 포스코(POSCO)에서 제작된 1.4t(mm) 두께인 AHSS(advanced high strength steels)을 사용하였다. 모재인 DP590과 접합체의 미세조직은 광학현미경과 주사전자현미경을 이용하여 관찰하였으며 기계적 특성은 경도시험과 인장시험을 실시하여 조사하였다. 경도의 분포는 모재에서 약 220~230Hv이며 TMAZ부분에서 상승하기 시작하여 접합부에서 약 320Hv까지 상승하는 경향을 보였으며 인장시험 결과 접합속도 100~200 mm/min에서는 모든 시편이 모재에서 파단되어지는 것을 확인할 수 있었다. 위와 같은 결과 300~350 RPM, 100~200 mm/min의 공정조건에서는 접합이 성공적으로 이루어졌으며 차량경량화에 적용이 가능하다고 판단되어진다.

  • PDF

Process Design of Automobile Seat Rail Lower Parts using Ultra-High Strength, DP980 Steel (980MPa급 초고장력 강판을 이용한 자동차용 시트 레일 로어 부품의 성형공정 설계)

  • Park, Dong-Hwan;Tak, Yun-Hak;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The purpose of this study is to develop a process for forming a MPa ultra-high strength steel sheet to reduce weight and improve product strength. To do this, we performed the initial process design based on empirical formulas in a handbook and experience of skilled engineers, and researched the effects of major process variables on spring back by analyzing the forming analysis and experimental results. This paper suggests an optimal process design of the seat rail lower parts, using a MPa ultra-high strength steel sheet. This satisfies the dimensional accuracy and strength requirements for the product.

저탄소 2상조직강의 열처리공정 조건에 따른 기계적특성 변화

  • Kim, Hun-Dong;Park, Jin-Seong;Mun, Man-Bin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • Recently high strength steel sheets with high formability for automotive parts have been being developed to meet the demands for passenger safety and weight reduction of car body. Among these high strength steels, dual-phase steels are regarded as one of the attractive steels due to their excellent mechanical properties including high strength and ductility. However, to be successfully applied to automotive parts they should be corrosion resistant enough to satisfy the required quality of car maker. This also requires their feasibility for galvannealed production including hot dip galvanizability. In this study has been placed on understanding the effects of heat-treatment(austenizing and isothermal treatment) on the microstructures and mechanical properties of a 0.06C-0.03Si-2.0Mn high strength steel for cold forming. The microstructure and phase distribution were examined with eth aids of SEM, EBSD, TEM etc.. Through the study the production of 590MPa grade DP GA steels with good formability and galvaniability were shown to be possible.

  • PDF

Development of Austomtive Cold-roiled High Strength Steel Sheets (자동차용 고강도 냉연강판 개발)

  • 김성주;진광근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.349-356
    • /
    • 2004
  • 자동차의 외관품질과 관련된 외판재용 고강도강으로는 내 dent성을 향상을 위해서 IF-HSS강과 BH강의 사용량이 크게 증가하였으며, 최근에는 490MPa급 DP강이 적용되기 시작하고 있다. 그리고 내판 판넬의 경우에는 고가공성 을 갖는 고강도강의 개발으로 고강도강의 사용량이 늘어나고 있다. 내판재 중 승객의 안전과 관련된 멤버, 필라와 같은 구조부재는 중간 정도의 강도를 갖는 고강도강을 주로 적용되어 왔으나, 최근 차체경량화 요구의 증가로 590MPa급 이상 고강도강이 적용되기 시작하였으며, 특히 고속변형에서 에너지 흡수능이 우수한 TRIP (Trans-formation Induced Plasticity)강 및 DP(Dual Phase)강에 대한 관심이 크게 증대되고 있다. 저속충돌에서 차체를 보호하는 범퍼보강재는 고강도화가 빠르게 진행되어, 현재는 석출경화강에 변태 조직 강화를 더한 780MPa급 이상의 초고강도강을 주로 사용하고 있으며, 1370MPa급 까지 적용하고 있다.

  • PDF