• Title/Summary/Keyword: DP 센서

Search Result 10, Processing Time 0.018 seconds

Dynamic Positioning 선박들의 사고사례 분석

  • Chae, Jong-Ju;Jeong, Yeon-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.60-62
    • /
    • 2015
  • Dynamic Positioning System(DPS)은 동력, DP control 장치, DP 컴퓨터, 위치참조시스템(PRS), 센서, thruster 시스템 및 DP 운용자(DPO) 7가지로 구성되어 있다. DP 선박은 이들 구성요소들에 문제가 발생하면 그 기능을 상실할 수 있다. 본 연구에서는 2001~2010년까지 10년 동안 IMCA 보고된 DP 선박 관련사고 612건에 대한 분석을 바탕으로 DPS의 7가지 구성요소와 관련된 사고 원인을 파악하고 이들 중 가장 높은 비율을 차지하는 원인을 정성적, 정량적으로 상세 분석하여 요소별 관계와 주요 작용 요소를 확인하고자 한다. 이를 통해 DP 선박의 LOP사과 관련 분석에 있어 베이지안 네트워크의 활용성을 확인해 보았다. 10년 평균 가장 높은 비율을 차지한 DPS 사고원인 요인은 PRS이었으며 이를 전문가 브레인스토밍을 통해 작성된 flowchart를 바탕으로 베이지안 네트워크를 통해 상세 분석해 본 결과 PRS의 각 요소별 조건부 확률 확인할 수 있었다. DP 선박의 drive off를 발생시키는데 주요한 영향을 미치는 것은 DGPS, microwave radar 및 HPR 이었고 DGPS에 주요한 영향을 미치는 에러 요인은 signal blocked, electric components failure, relative mode error 및 signal weak or fail 이었다.

  • PDF

An Analysis on Incident Cases of Dynamic Positioning Vessels (Dynamic Positioning 선박들의 사고사례 분석)

  • Chae, Chong-Ju;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.149-156
    • /
    • 2015
  • The Dynamic Positioning System consists of 7 elements which are namely Power system, Human machine interface, DP Computer, Position Reference System(PRS), Sensors, Thruster system and DP Operator. Incidents like loss of position(LOP) on DP vessel usually occur due to errors in these 7 elements. The purpose of this study is to find out safety operation method of DP vessel through qualitative and quantitative analyze of DP LOP incidents which are submitted to IMCA every year. The 612 DP LOP incidents submitted from 2001 to 2010 were analyzed to find out the main cause of the incidents and its rate among other causes. Consequently, the highest rate of incidents involving DP elements are PRS errors. DP computer, Power system, Human error and thruster system came next. The PRS has been analyzed and a flowchart was drawn through expert brainstorming. Also, the conditional probability has been analyzed through Bayesian Networks based on this flowchart. Consequentially, the main causes of drive off incidents were DGPS, microwave radar and HPR. Also, this study identified the main causes of DGPS errors through Bayesian Networks. These causes are signal blocked, electric components failure, relative mode error, signal weak or fail.

A Study on Dynamic Positioning System IMO class upgrade requirements (Dynamic Positioning System의 IMO Class 변경 요건에 관한 연구)

  • Chae, Chong-Ju
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.165-172
    • /
    • 2015
  • The class of Dynamic Positioning System is divided in 3 classes depending on its redundancy and reliability according to IMO and classification society. There are 3 DP classes such as DP Class 1, 2 and 3 according to IMO MSC/Circ. 645. Higher DP class vessel has higher reliability, since redundancy concept is applied to the DP vessel depending on its DP class and can operate more safely. There are not enough information about DP class notation, which are needed when a company builds a new or buys second hand DP vessel or modifies DP classes, even the Korean shipyard is building a lot of DP vessels now. Also, the practical case of DP vessel modification, which had been done in Korea, to meet DP notation of IMO and classification society, will be helpful for DP vessel modification and sales industry development in Korea as a new business. As such this research identified what kind of requirements need to be taken into account to be from DP class 1 to DP class 2. The real DP class modification case is used to identify the requirements of DP class upgrade. Through the FMEA the redundancy concept on power system, thruster system and DP control system need to apply for DP class upgrade. The power system have to keep its DP function even if just a single fault happens on the generator or switchboard. Also, the PMS is required to monitor and control power system. Ship's Surge, Sway and Yaw movements can be controlled by the remaining thruster system after a single thruster fails. Lastly, multiple installation of PRS, sensors and DP control system are required to keep DP ability after a single fault on the DP control systems.

Target Object Search Algorithm under Dynamic Programming in the Tree-Type Maze (Dynamic Programming을 적용한 트리구조 미로내의 목표물 탐색 알고리즘)

  • Lee Dong-Hoon;Yoon Han-Ul;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.626-631
    • /
    • 2005
  • This paper presents the target object search algorithm under dynamic programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved if the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using a real robot.

Prioritizing for Failure Modes of Dynamic Positioning System Using Fuzzy-FMEA (Fuzzy-FMEA를 이용한 동적위치제어 시스템의 고장유형 우선순위 도출)

  • Baek, Gyeongdong;Kim, Sungshin;Cheon, Seongpyo;Suh, Heungwon;Lee, Daehyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • Failure Mode and Effects Analysis (FMEA) has been used by Dynamic Positioning (DP) system for risk and reliability analysis. However, there are limitations associated with its implementation in offshore project. 1) since the failure data measured from the SCADA system is missing or unreliable, assessments of Severity, Occurrence, Detection are based on expert's knowledge; 2) it is not easy for experts to precisely evaluate the three risk factors. The risk factors are often expressed in a linguistic way. 3) the relative importance among three risk factors are rarely even considered. To solve these problems and improve the effectiveness of the traditional FMEA, we suggest a Fuzzy-FMEA method for risk and failure mode analysis in Dynamic Positioning System of offshore. The information gathered from DP FMEA report and DP FMEA Proving Trials is expressed using fuzzy linguistic terms. The proposed method is applied to an offshore Dynamic Positioning system, and the results are compared with traditional FMEA.

Privacy-Preserving Aggregation of IoT Data with Distributed Differential Privacy

  • Lim, Jong-Hyun;Kim, Jong-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.65-72
    • /
    • 2020
  • Today, the Internet of Things is used in many places, including homes, industrial sites, and hospitals, to give us convenience. Many services generate new value through real-time data collection, storage and analysis as devices are connected to the network. Many of these fields are creating services and applications that utilize sensors and communication functions within IoT devices. However, since everything can be hacked, it causes a huge privacy threat to users who provide data. For example, a variety of sensitive information, such as personal information, lifestyle patters and the existence of diseases, will be leaked if data generated by smarwatches are abused. Development of IoT must be accompanied by the development of security. Recently, Differential Privacy(DP) was adopted to privacy-preserving data processing. So we propose the method that can aggregate health data safely on smartwatch platform, based on DP.

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

Efficient FPGA Logic Design for Rotatory Vibration Data Acquisition (회전체 진동 데이터 획득을 위한 효율적인 FPGA 로직 설계)

  • Lee, Jung-Sik;Ryu, Deung-Ryeol
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • This paper is designed the efficient Data Acquisition System for an vibration of rotatory machines. The Data Acquisition System is consist of the analog logic having signal filer and amplifier, and digital logic with ADC, DSP, FPGA and FIFO memory. The vibration signal of rotatory machines acquired from sensors is controlled by the FPGA device through the analog logic and is saved to FIFO memory being converted analog to digital signal. The digital signal process is performed by the DSP using the vibration data in FIFO memory. The vibration factor of the rotatory machinery analysis and diagnosis is defined the RMS, Peak to Peak, average, GAP, FFT of vibration data and digital filtering by DSP, and is need to follow as being happened the event of vibration and make an application to an warning system. It takes time to process the several analysis step of all vibration data and the event follow, also special event. It should be continuously performed the data acquisition and the process, however during processing the input signal the DSP can not be performed to the acquisited data after then, also it will be lose the data at several channel. Therefore it is that the system uses efficiently the DSP and FPGA devices for reducing the data lose, it design to process a part of the signal data to FPGA from DSP in order to minimize the process time, and a process to parallel process system, as a result of design system it propose to method of faster process and more efficient data acquisition system by using DSP and FPGA than signal DSP system.

A Respiration Rate Measurement of Fresh Fruits and Vegetables with a Corrected Pressure Variation Method (수정된 압력변위법을 이용한 과채류 호흡속도 측정)

  • Lee, Hyun-Dong;Chung, Hun-Sik;Kang, Jun-Soo;Chung, Shin-Kyo;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1119-1124
    • /
    • 1997
  • This study was carried out for improvement and correction of the traditional pressure variation method (PVM) in the respiration rate measurements of fresh fruits and vegetables using a microcomputer system and a differential pressure sensor. Water vapor pressure in the container was calculated by equations for psychrometric calculations. At the beginning of experimental period water vapor pressure in the container was increased and maintained constantly in the most experimental period, but was decreased dramatically after $CO_2$ scrubbing. The percentages of water vapor pressure on total differential pressure were $33{\sim}46%$ at $1^{\circ}C$, $23{\sim}45%$ at $11^{circ}C$ and $35{\sim}53%$ at $21^{\circ}C$. The differences between the respiration rates determined by gas chromatography and corrected pressure variation method (CPVM) were $0.2{\sim}0.3\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $0.2{\sim}2.9\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and 1.0{\sim}9.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, while those between gas chromatography and normal pressure variation method (PVM) were $0.8{\sim}1.2\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $3.9{\sim}11.0\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and $8.0{\sim}32.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, respectively. The differences of the respiration rates with CPVM were smaller than those with PVM. CPVM, therefore, were more exact and convenient method than PVM in the measurement of respiration rate of fresh produce.

  • PDF