• Title/Summary/Keyword: DOPPLER

Search Result 2,271, Processing Time 0.029 seconds

Analysis of Doppler Effects in OFDM Systems Using Transceiver Diversity (송수신 다이버시티를 이용한 OFDM시스템에서의 도플러 영향분석)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1658-1664
    • /
    • 2007
  • The popularity of OFDM systems is being increased because of high speed data transmission capability md the spectral efficiency characteristics. However, since OFDM systems are very sensitive to the Doppler spread, The interference among subcarriers and the total system noise can be increased seriously due to the degree of Doppler effects which can cause the orthogonality problems. Therefore, these Doppler effects were analyzed using the Doppler spectrum models by varying its parameters. Especially in this paper, The degree of system performance degradation was investigated for the OFDM systems applying the relatively simple transmit and receiver diversity. The degree of the system performance degradation depends on the specific diversity structures of transceiver systems. Here, the performances of OFDM systems with two antennas transceiver diversity were analyzed and compared with that of systems with only transmission diversity and without diversity as the Doppler characteristics varied.

Scanning Rayleigh Doppler Lidar for Wind Profiling Based on Non-polarized Beam Splitter Cube Optically Contacted FPI

  • Zheng, Jun;Sun, Dongsong;Chen, Tingdi;Zhao, Ruocan;Han, Yuli;Li, Zimu;Zhou, Anran;Zhang, Nannan
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • A Scanning Rayleigh Doppler lidar for wind profiling based on a non-polarized beam splitter cube optically contacted FPI is developed for wind measurement from high troposphere to low stratosphere in 5-35 km. Non-polarized beam splitter cube optically contacted to the FPI are used for a stable optical receiver. Zero Doppler shift correction is used to correct for laser or FPI frequency jitter and drift and the timing sequence is designed. Stability of the receiver for Doppler shift discrimination is validated by measuring the transmissions of FPI in different days and analyzed the response functions. The maximal relative wind deviation due to the stability of the optical receiver is about 4.1% and the standard deviation of wind velocity is 1.6% due to the stability. Wind measurement comparison experiments were carried out in Jiuquan ($39.741^{\circ}N$, $98.495^{\circ}E$), Gansu province of China in 2015, showing good agreement with radiosonde result data. Continuous wind field observation was performed from October 16th to November 12th and semi-continuous wind field of 19 nights are presented.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

A Study on Central Vein Cannulation Using Audible Doppler Guidance in Children and Infants (Audible Doppler Ultrasound(8 MHz)를 이용한 소아와 영아에서 중심정맥 도관 삽입술에 관한 연구)

  • Ahn, Young Joon;Jung, Jin Young;Hong, Soo-Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1120-1125
    • /
    • 2002
  • Purpose : Percutaneous cannulation of the central vein in children and infants may be technically difficult and can cause serious complications. There are many techniques to improve the success rate and to decrease the complications in central vein cannulation. This study was undertaken to determine whether audible Doppler guidance can help operators improve the results of central vein cannultion in pediatric ICU. Methods : A total of 46 central vein cannulations were performed using audible Doppler guidance technique. Using an 8-MHz Doppler ultrasound device(Pocket-Dop II. iMex. USA), the artery and the vein were identified by their characteristic Doppler sounds. Results : There was a total of 46 patients with 20 boys and 26 girls, respectively. The mean age was $3years{\pm}45months$(range : 1-156 months). The number of infants was 18 and the mean age was $6.3{\pm}3.8$ months(range : 1-12 months). The most common site of central vein cannulation was the right internal jugular vein(63%). The cannulation was successful in 44 out of 46 procedures(96%). The success rate at the first attempt was 59% with 48% in the patients who had the history of previous cannulation and 70% in the patients who did not, respectively. The success rate in infants was 94%(17 out of 18). The average access time was $5.2{\pm}8.3$ minutes in children contrary to $7.5{\pm}10.3$ minutes in infants. There were no serious complications, but six patients had complications including four hematoma, one arterial puncture, and one pneumothorax. Conclusion : This central vein cannulation using Doppler guidance may improve the success rate of central vein cannulation and decrease the development of serious complications in infants and children.

Effects of Launching Vehicle's Velocity on the Performance of FTS Receiver (발사체의 속도가 FTS 수신기의 성능에 미치는 영향)

  • Kang, Sanggee
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2014
  • A doppler shift is generated by moving a transmitter or receiver operated in communication systems. The doppler frequency shift between a transmitter and a receiver or the frequency offset present in transceivers must be removed to get the wanted system performance. FTS is used for preventing an accident from operating abnormally and for guaranteeing public protection. A launching vehicle's initial velocity is very fast in order to escape the earth and the amount of doppler shift is large. Recently many studies to adopt the next generation FTS are ongoing. To introduce new FTS, the effects of doppler shift on the performance of the new FTS must be studied. In this paper the doppler effect caused by launching vehicle's velocity affecting the performance of FTS receiver is investigated into two cases, one is for EFTS as a digital FTS and the other is for FTS using a tone signal. Noncoherent DPSK and noncoherent CPFSK are considered as the modulation methods of EFTS. In the cases of the doppler frequency shift of 200Hz present in EFTS using noncoherent DPSK and noncoherent CPFSK are simulated. Simulation results show that $E_b/N_o$ of 0.5dB deteriorates in the region of near BER of about $10^{-5}$ in RS coding. And there is no performance variation in $E_b/N_o$ or $E_b/N_o$ is worsened about 0.1dB in the same BER region for the case of using convolutional and BCH coding. Quadrature detector used in FTS using tone signals is not influenced by the doppler frequency shift.

PULP VITALITY TEST OF TEETH AFTER TRAUMATIC INJURIES USING LASER DOPPLER FLOWMETRY - A CASE REPORT (외상 받은 치아의 치수생활력 검사 - Laser Doppler flowmetry를 이용한 증례보고)

  • Song, Yun-Ju;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.310-316
    • /
    • 1999
  • In the traumatized teeth, the major complications are pulp necrosis, and root resorption. The factors influencing to prognosis are the state of root development, type of injuries, quality of fixation. There are good prognosis in the case of immature teeth, minor luxation injuries. To minimize of occurrence of these complication, it is very important to determine the pulp vitality. This can help us decide whether or not to treat the teeth endodontically. But, it is difficult to determine of pulp vitality in immature teeth or traumatized teeth. In this case, pulp vitality test was done periodically on the traumatized upper central incisors, and the results were different among cold test, electric pulp test, and laser Doppler flowmetry. The conclusions were obtained from this case can be summarized as follows; 1. Pulp vitality of traumatized teeth should be negative early, but with time going, pulp vitality could be recovered. 2. The positive response of pulp vitality test was detected earlier in laser Doppler flowmetry. 3. Between cold test and electric pulp test, cold test was more reliable in determining pulp vitality.

  • PDF

COMPARISON OF LOS DOPPLER VELOCITIES AND NON-THERMAL LINE WIDTHS IN THE OFF-LIMB SOLAR CORONA MEASURED SIMULTANEOUSLY BY COMP AND HINODE/EIS

  • Lee, Jae-Ok;Lee, Kyoung-Sun;Seough, Jungjoon;Cho, Kyung-Suk
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.2
    • /
    • pp.49-60
    • /
    • 2021
  • Observations of line of sight (LOS) Doppler velocity and non-thermal line width in the off-limb solar corona are often used for investigating the Alfvén wave signatures in the corona. In this study, we compare LOS Doppler velocities and non-thermal line widths obtained simultaneously from two different instruments, Coronal Multichannel Polarimeter (CoMP) and Hinode/EUV Imaging Spectrometer (EIS), on various off-limb coronal regions: flaring and quiescent active regions, equatorial quiet region, and polar prominence and plume regions observed in 2012-2014. CoMP provides the polarization at the Fe xiii 10747 Å coronal forbidden lines which allows their spectral line intensity, LOS Doppler velocity, and line width to be measured with a low spectral resolution of 1.2 Å in 2-D off limb corona between 1.05 and 1.40 RSun, while Hinode/EIS gives us the EUV spectral information with a high spectral resolution (0.025 Å) in a limited field of view raster scan. In order to compare them, we make pseudo raster scan CoMP maps using information of each EIS scan slit time and position. We compare the CoMP and EIS spectroscopic maps by visual inspection, and examine their pixel to pixel correlations and percentages of pixel numbers satisfying the condition that the differences between CoMP and EIS spectroscopic quantities are within the EIS measurement accuracy: ±3 km s-1 for LOS Doppler velocity and ±9 km s-1 for non-thermal width. The main results are summarized as follows. By comparing CoMP and EIS Doppler velocity distributions, we find that they are consistent with each other overall in the active regions and equatorial quiet region (0.25 ≤ CC ≤ 0.7), while they are partially similar to each other in the overlying loops of prominences and near the bottom of the polar plume (0.02 ≤ CC ≤ 0.18). CoMP Doppler velocities are consistent with the EIS ones within the EIS measurement accuracy in most regions (≥ 87% of pixels) except for the polar region (45% of pixels). We find that CoMP and EIS non-thermal width distributions are similar overall in the active regions (0.06 ≤ CC ≤ 0.61), while they seem to be different in the others (-0.1 ≤ CC ≤ 0.00). CoMP non-thermal widths are similar to EIS ones within the EIS measurement accuracy in a quiescent active region (79% of pixels), while they do not match in the other regions (≤ 61% of pixels); the CoMP observations tend to underestimate the widths by about 20% to 40% compared to the EIS ones. Our results demonstrate that CoMP observations can provide reliable 2-D LOS Doppler velocity distributions on active regions and might provide their non-thermal width distributions.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.