• Title/Summary/Keyword: DOM Interface

Search Result 12, Processing Time 0.016 seconds

Development of an Editor for Reference Data Library Based on ISO 15926 (ISO 15926 기반의 참조 데이터 라이브러리 편집기의 개발)

  • Jeon, Youngjun;Byon, Su-Jin;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.390-401
    • /
    • 2014
  • ISO 15926 is an international standard for integration of lifecycle data for process plants including oil and gas facilities. From the viewpoint of information modeling, ISO 15926 Parts 2 provides the general data model that is designed to be used in conjunction with reference data. Reference data are standard instances that represent classes, objects, properties, and templates common to a number of users, process plants, or both. ISO 15926 Parts 4 and 7 provide the initial set of classes, objects, properties and the initial set of templates, respectively. User-defined reference data specific to companies or organizations are defined by inheriting from the initial reference data and the initial set of templates. In order to support the extension of reference data and templates, an editor that provides creation, deletion and modification functions of user-defined reference data is needed. In this study, an editor for reference data based on ISO 15926 was developed. Sample reference data were encoded in OWL (web ontology language) according to the specification of ISO 15926 Part 8. iRINGTools and dot15926Editor were benchmarked for the design of GUI (graphical user interface). Reference data search, creation, modification, and deletion functions were implemented with XML (extensible markup language) DOM (document object model), and SPARQL (SPARQL protocol and RDF query language).

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.