• Title/Summary/Keyword: DOF(degree of freedom)

Search Result 348, Processing Time 0.028 seconds

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

Turret location impact on global performance of a thruster-assisted turret-moored FPSO

  • Kim, S.W.;Kim, M.H.;Kang, H.Y.
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.265-287
    • /
    • 2016
  • The change of the global performance of a turret-moored FPSO (Floating Production Storage Offloading) with DP (Dynamic Positioning) control is simulated, analyzed, and compared for two different internal turret location cases; bow and midship. Both collinear and non-collinear 100-yr GOM (Gulf of Mexico) storm environments and three cases (mooring-only, with DP position control, with DP position+heading control) are considered. The horizontal trajectory, 6DOF (degree of freedom) motions, fairlead mooring and riser tension, and fuel consumptions are compared. The PID (Proportional-Integral-Derivative) controller based on LQR (linear quadratic regulator) theory and the thrust-allocation algorithm which is based on the penalty optimization theory are implemented in the fully-coupled time-domain hull-mooring-riser-DP simulation program. Both in collinear and non-collinear 100-yr WWC (wind-wave-current) environments, the advantage of mid-ship turret is demonstrated by the significant reduction in heave at the turret location due to the minimal coupling with pitch mode, which is beneficial to mooring and riser design. However, in the non-collinear WWC environment, the mid-turret case exhibits unfavorable weathervaning characteristics, which can be reduced by employing DP position and heading controls as demonstrated in the present case studies. The present study also reveals the plausible cause of the failure of mid-turret Gryphon Alpha FPSO in milder environment than its survival condition.

Parameter Estimation of Dynamic System Based on UKF (UKF 기반한 동역학 시스템 파라미터의 추정)

  • Seung, Ji-Hoon;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.772-778
    • /
    • 2012
  • In this paper, the states and the parameters in the dynamic system are simultaneously estimated by applying the UKF(Unscented Kalman Filter), which is widely used for estimating the state of non-linear systems. Estimating the parameter is very important in various fields, such as system control, modeling, analysis of performance, and prediction. Most of the dynamic systems which are dealt with in engineering have non-linearity as well as some noise. Therefore, the parameter estimation is difficult. This paper estimates the states and the parameters applying to the UKF, which is a non-linear filter and has strong noise. The augmented equation is used by including the addition of the parameter factors to the original state equation of the system. Moreover, it is simulated by applying to a 2-DOF(Degree of Freedom) dynamic system composed of the pendulum and the slide. The measurement noise of the dynamic equation is assumed to be a Gaussian distribution. As the simulation results show, the proposed parameter estimation performs better than the LSM(Least Square Method). Furthermore, the estimation errors and convergence time are within three percent and 0.1 second, respectively. Consequentially, the UKF is able to estimate the system states and the parameters for the system, despite having measurement data with noise.

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF

Decision Making Model for Powertrain Mount-Stop&Go Performance in a compact mobile (소형 승용차의 파워트레인 마운트 Stop&Go 성능 적용을 위한 의사결정모델)

  • Yu, Jung-Woo;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.967-976
    • /
    • 2012
  • This study presents a model to minimize vibration and noise of powertrain mount on a compact car which has the application of Stop & Go performance, in order to reduce CO2 and achieve better fuel-efficiency in accordance with the environmental regulations in automotive industries. In the first step, we analyze the powertrain mount system of the automobile "A" and present variables about rubber stiffness applied on powertrain mount using the Taguchi method. In the next step, we verify the optimization of vibration and noise which meet Stop & Go performance using the AHP(Analytic Hierarchy Process) method on the proto products for each variable. Using this validation system on the initial stage of the powertrain mount design, it is expected that we can grasp vibration and noise problems caused by engine movements and control them effectively without engineering know-how about powertrain mount rubber stiffness.

System Modeling and Waypoint Guidance Law Designing for 6-DOF Quadrotor Unmanned Aerial Vehicle (6-자유도 쿼드로터 무인항공기의 모델링 및 유도기법 설계)

  • Lee, Sanghyun;Kim, Youdan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.305-316
    • /
    • 2014
  • As avionics and mechanical devices have been developed, the size of unmanned aerial vehicle (UAV) is getting smaller. However, the complicated and accurate missions are provided to the UAV. Among various types of UAVs, quadrotors are widely used for their availability by virtue of simple structure and hovering function. However, the control of quadrotor is highly constrained, because the quadrotor is an under-actuated system which has only 4 actuator inputs. To deal with this under-actuated problem, a new quadrotor model with two more actuators in addition to the 4 propeller inputs is provided to make the system fully-actuated. For the proposed model, a controller is designed using feedback linearization methods. To validate the model and to verify the performance of the proposed controller, numerical simulation is performed.

Fast Marker-based Registration of 3D CT and 2D X-ray Fluoroscopy Images (3차원 전산화 단층촬영영상과 2차원 X-선 투시영상간 표식기 기반 고속 정합)

  • Kim Gye-Hyun;Park Seong-Jin;Hong He-Len;Shin Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.3
    • /
    • pp.335-343
    • /
    • 2006
  • This paper proposes a novel technique of marker-based 2D-3D registration to combine 3D information obtained from preoperative CT images into 2D image obtained from intraoperative x-ray fluoroscopy image. Our method is divided into preoperative and intraoperative procedures. In preoperative procedure, we generate CT-derived DRRs using graphics hardware and detect markers automatically. In intraoperative procedure, we propose a hierarchical two- step registration to reduce a degree of freedom from 6-DOP to 2-DOF which is composed of in-plane registration using principal axis method and out-plane registration using minimal error searching method in spherical coordinate. For experimentation, we use cardiac phantom datasets with confirmation markers and evaluate our method in the aspects of visual inspection, accuracy and processing time. As experimental results, our method keeps accuracy and aligns very fast by reducing real-time computations.

Line-of-Sight Rate for Off-axis Seeker on a 2-axis Gimbal (2축 김발 위에 장착된 비축탐색기를 위한 시선각속도 계산)

  • Kim, Jeong-Hun;Park, Kuk-Kwon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • The off-axis Infra-Red(IR) seeker is mounted on the nose cone side of the anti-air high speed missile to alleviate thermal shield effect due to aerodynamic heating. The seeker output can not be regarded as the Line-of-Sight(LOS) rate any more as missile's roll motion to keep the target tracking is associated. In this paper, we propose a method to calculate the LOS rate for off-axis seeker on a 2-axis gimbal. Firstly, true LOS rate equations are analytically derived but not implementable because boresight error rate is not measurable. And then the first order lag approximation to obtain boresight error rate is proposed. The proposed LOS rate calculation method can compensate the coupling effect by considering the rotations of missile and gimbal. The performance of the proposed method is verified via full nonlinear 6-DOF(Degree of Freedom) simulations.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.