• Title/Summary/Keyword: DOF(Degree of Freedom)

Search Result 347, Processing Time 0.03 seconds

Operational Characteristics of a Domestic Commercial Semi-automatic Vegetable Transplanter (상용 국산 반자동 채소 정식기의 작동 특성 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.127-138
    • /
    • 2018
  • In this study, the operational characteristics of a domestic vegetable transplanter were investigated. The main functional components and power path of the tranplanter were analyzed. The link structure of transplanting device waskinematically analyzed, and 3D modeling and dynamic simulation were performed. Based on this analysis, the trajectory of the bottom end of the transplanting hopper was analyzed. Also, the plant spacing according to the engine speed and the shifting stage of transplanting transmission was analyzed and verified by field test. As main results of this study, the transplanting device is one degree of freedom(DOF) 4-bar link type mechanism which comprises 10 links and 13 rotating joints. The transplanting hopper plants seedlings in a vertical direction while maintaining a constant posture by the links of transplanting device. The power is transmitted to both the driving part and transplanting part from the engine, and the maximum and minimum plant spacing of the transplanting device were 428.97 mm and 261.20 mm.

Study on Hydrodynamic Forces Acting on Tanker Hull with Consideration of Various Vertical Centers of Gravity in Drift Test (다양한 수직방향 무게중심을 고려한 사항 중 탱커 선체에 작용하는 유체력에 관한 연구)

  • Park, Taechul;Lee, Sungwook;Paik, Kwang-Jun;Moon, Sung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.433-439
    • /
    • 2018
  • An investigation was conducted to determine whether the changes in the maneuvering forces and moments acting on a hull could be affected by changing the vertical center of gravity (VCG) of a tanker. The changes in the hydrodynamic forces and moment acting on a hull according to the restraint conditions of motion were examined using CFD for cases where the VCG was located at the design draught (100% of draught), under the design draught (75% of draught), and at half of the design draught (50% of draught). The following motion restraint conditions were selected: (1) fixed restraints for everything; (2) heave, pitch, and roll free restraint; and (3) heave and pitch free restraints. It was found that restraint condition (2) had the best agreement with the model experiment results. In addition, it was found that the hydrodynamic forces and moment acting on the hull with restraint condition (2) could be greatly affected in the model tests and CFD calculations by the various configurations for the vertical center of gravity of the hull. Finally, it was concluded that the location of the vertical center of gravity of the hull could be an important factor when more accurate hydrodynamic maneuvering forces and moment are estimated.

Modeling of Multi-Boom Floating Crane for Lifting Analysis of Offshore Wind Turbine (해상 풍력 발전기 리프팅 해석을 위한 해상 크레인 멀티 붐 모델링)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The dynamic responses of a 5 MW wind turbine lifted by a floating crane with two elastic booms are analyzed. Dynamic equations of motions of a multibody system that consists of a floating crane, two elastic booms, and a wind turbine are derived. The six-degree-of-freedom (DOF) motions for the floating crane and the wind turbine are considered in the equations of motions. The hydrostatic force, the hydrodynamic force due to a regular wave, the mooring force, the wire rope force, and the gravitational force are considered as external forces. By solving the equations numerically, the dynamic responses of cargo are simulated. The simulation results are compared with those in the case of one elastic boom. Finally, the dynamic responses of the wind turbine lifted by the floating crane are analyzed under regular wave condition.

Fuzzy Control and Implementation of a 3-Dimensional Inverted Pendulum System (3차원 도립진자 시스템의 구현 및 퍼지 제어)

  • Shin, Ho-Sun;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2003
  • The fuzzy control and implementation of a new three-dimensional(3-D) inverted pendulum system are addressed. In comparison with conventional 1-D and 2-D systems, the 3-D inverted pendulum system is a proper benchmark system to simulate human's control action which includes the up and down motion to stabilize an inverted pendulum. To investigate the characteristics of the 3-D inverted pendulum system and to design of a fuzzy controller, we derive dynamic equations of the mechanism including a 3-axis cartesian robot and an inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of an inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot and the constrained workspace are taken into account. The performance of the proposed system is proved by experimental results using a developed PC-based Multi-Motion Control(MMC) board.

Object Part Detection-based Manipulation with an Anthropomorphic Robot Hand Via Human Demonstration Augmented Deep Reinforcement Learning (행동 복제 강화학습 및 딥러닝 사물 부분 검출 기술에 기반한 사람형 로봇손의 사물 조작)

  • Oh, Ji Heon;Ryu, Ga Hyun;Park, Na Hyeon;Anazco, Edwin Valarezo;Lopez, Patricio Rivera;Won, Da Seul;Jeong, Jin Gyun;Chang, Yun Jung;Kim, Tae-Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.854-857
    • /
    • 2020
  • 최근 사람형(Anthropomorphic)로봇손의 사물조작 지능을 개발하기 위하여 행동복제(Behavior Cloning) Deep Reinforcement Learning(DRL) 연구가 진행중이다. 자유도(Degree of Freedom, DOF)가 높은 사람형 로봇손의 학습 문제점을 개선하기 위하여, 행동 복제를 통한 Human Demonstration Augmented(DA)강화 학습을 통하여 사람처럼 사물을 조작하는 지능을 학습시킬 수 있다. 그러나 사물 조작에 있어, 의미 있는 파지를 위해서는 사물의 특정 부위를 인식하고 파지하는 방법이 필수적이다. 본 연구에서는 딥러닝 YOLO기술을 적용하여 사물의 특정 부위를 인식하고, DA-DRL을 적용하여, 사물의 특정 부분을 파지하는 딥러닝 학습 기술을 제안하고, 2 종 사물(망치 및 칼)의 손잡이 부분을 인식하고 파지하여 검증한다. 본 연구에서 제안하는 학습방법은 사람과 상호작용하거나 도구를 용도에 맞게 사용해야하는 분야에서 유용할 것이다.

MULTI-STAGE AERODYNAMIC DESIGN OF AIRCRAFT GEOMETRIES BY KRIGING-BASED MODELS AND ADJOINT VARIABLE APPROACH (Kriging 기반 모델과 매개변수(Adjoint Variable)법을 이용한 항공기형상의 2단계 공력최적설계)

  • Yim, J.W.;Lee, B.J.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.57-65
    • /
    • 2009
  • An efficient and high-fidelity design approach for wing-body shape optimization is presented. Depending on the size of design space and the number of design of variable, aerodynamic shape optimization process is carried out via different optimization strategies at each design stage. In the first stage, global optimization techniques are applied to planform design with a few geometric design variables. In the second stage, local optimization techniques are used for wing surface design with a lot of design variables to maintain a sufficient design space with a high DOF (Degree of Freedom) geometric change. For global optimization, Kriging method in conjunction with Genetic Algorithm (GA) is used. Asearching algorithm of EI (Expected Improvement) points is introduced to enhance the quality of global optimization for the wing-planform design. For local optimization, a discrete adjoint method is adopted. By the successive combination of global and local optimization techniques, drag minimization is performed for a multi-body aircraft configuration while maintaining the baseline lift and the wing weight at the same time. Through the design process, performances of the test models are remarkably improved in comparison with the single stage design approach. The performance of the proposed design framework including wing planform design variables can be efficiently evaluated by the drag decomposition method, which can examine the improvement of various drag components, such as induced drag, wave drag, viscous drag and profile drag.

  • PDF

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

Experimental Verification of Effectiveness of Stabilization Control System for Mobile Surveillance Robot (기동형 경계로봇 안정화 시스템의 실험적 검증)

  • Kim, Sung-Soo;Lee, Dong-Youm;Kwon, Jeong-Joo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • A mobile surveillance robot is defined as a surveillance robot system that is mounted on a mobile platform and is used to protect public areas such as airports or harbors from invaders. The mobile surveillance robot that is mounted on a mobile platform consists of a gun module, a camera system module, an embedded control system, and AHRS (Attitude and Heading Reference System). It has two axis control systems for controlling its elevation and azimuth. In order to obtain stable images for targeting invaders, this system requires a stabilizer to compensate any disturbance due to vehicle motion. In this study, a virtual model of a mobile surveillance robot has been created and ADAMS/Matlab simulations have been performed to verify the suitability of the proposed stabilization algorithm. Further, the suitability of the stabilization algorithm has also been verified using a mock-up of the mobile surveillance robot and a 6-DOF (Degree Of Freedom) motion simulator.

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.