• Title/Summary/Keyword: DOD

Search Result 99, Processing Time 0.023 seconds

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.

A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구)

  • Jo, Yong-Min;Park, Sung-Jun
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

전기자동차용 Plastic Li-ion battery

  • Han Gyu Nam;Seo Hyeon Mi;Kim Jae Gyeong;Kim Yong Sam;Sin Dong Yeop;Jeong Bok Hwan;Im Hong Seop;Eom Seung Uk;Mun Seong In
    • 한국전기화학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.51-62
    • /
    • 2000
  • Large plastic Li-ion (PLI) cells (25 to 28-Ah) were fabricated for an EV application. The 28-Ah cells showed high specific energy (160 Wh/kg), high specific power (526 W/g), excellent round-trip energy efficiency $(92\%)$, and low self-discharge rate ($6\%$ in 30 days). A 25-Ah cell of an earlier design showed good cycle life of up to 750 cycles at $100\%$ DOD to $80\%$ of its initial capacity, while cycle life test of a 28-Ah cell of a later design is in progress. Preliminary safety tests were also carried out using 6-Ah cells of a similar electrode design giving very encouraging results for development of a safe hish-energy density PLI battery for EV application.

  • PDF

The Method of Battery Lifetime Optimization for V2G System considering Load Leveling (부하평준화를 고려한 V2G 시스템의 배터리 수명 최적화 기법)

  • Shin, Chang-Hyun;Kim, Do-Yun;Won, Il-Kuen;Kim, Young-Real;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.538-539
    • /
    • 2014
  • The development of smart grid technologies will enable enhanced utilization of electric vehicles(EV) as portable energy storage devices which can provide power system-wide. Because significant increase of EV in the near future, V2G(Vehicle-to-Grid) system will soon become a reality. This paper presents the optimal method of a battery lifetime depending on depth of discharge(DOD) considering load leveling.

  • PDF

Modeling of Battery Energy Storage System at Substation for Load Leveling and Its Economic Evaluation (부하 평준화를 위한 변전소 설치 배터리 에너지 저장장치의 모델 및 경제성 평가에 관한 연구)

  • Cho, Sung-Min;Shin, Hee-Sang;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.950-956
    • /
    • 2012
  • As development of battery technologies, the installation of Battery Energy Storage System (BESS) increased. The BESS can be used for various purposes such like frequency response, load leveling, and fluctuation mitigation of renewable energy generators. In this paper, three state BESS model is proposed. the BESS model considering charge, discharge and keeping efficiency, and life cycle according to depth of discharge (DOD). Then, the benefit and cost of BESS installed at substation for load leveling are summarized. The economic evaluation of BESS is analyzed using net present values (NPV) analysis. In case study, the NPV analysis of NaS battery system is carried out using the proposed BESS model. Because the result of economic evaluation of BESS using nowadays cost data is not positive, the sensitivity analysis of BESS is conducted by changing the capital cost and energy cost.

Effects of Curing & Formation Conditions on the Capacity of Positive Plate for Automotive Vehicles VRLA Batteries (양극판의 숙성과 화성조건이 자동차용 VRLA 배터리 성능에 미치는 영향)

  • Jeong, Soon-Wook;Ku, Bon-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 2016
  • We studied the effect of battery deep cycle according to the way of active materials formation and the creation condition of electrode material, 3BS ($3PbO{\cdot}PbSO_4{\cdot}H_2O$) and 4BS ($4PbO{\cdot}PbSO_4$), in order to develop the batteries for Idle Stop & Go system. During the curing with active materials of anode and cathode, we found that the final creased active material was deformed by temperature control and it effects the durability of batteries. AGM battery and Flooded battery with 3BS active materials have excellent initial performance. And AGM battery with 4BS active materials shows the lower performance relatively. To compare and analyze of the formation efficiency of active materials, we tested the formation chagging steps with 3 steps and 9 steps differently. The results are that AGM battery with 4BS active materials is better on initial performance than AGM battery with 3BS. After the comparison of durability by DOD 17.5% life test, AGM battery is more suitable than flooded battery for the ISG system which needs the frequent deep cycle. In conclusion, AGM battery is the most suitable for ISG system and the life performance shows 80% difference according to the way of formation and curing of AGM batteries.

Total Simulation for the Noise Prediction of Motor Driving System in EV/HEV System (EV/HEV용 모터 구동 시스템의 Noise 예측을 위한 통합 시뮬레이션에 대한 연구)

  • Gwon, O-Hyun;Lee, Jae Joong;Kim, Kwang-Ho;Ahn, Ji-Hyun;Kweon, Hyuck-Su;Kim, Mi-Ro;Jung, Sang-Yong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.710-721
    • /
    • 2013
  • The noise prediction of motor driving system is one of the most important parts in EV/HEV, as the number of power electronic devices increases. This paper describes the mechanism of noise making process and proposes a simulation model of motor driving system for the prediction of the conducted noise. Theoretical calculations and model based simulations were carried out. DOD-dependent-battery parameters were extracted by AC analysis, and an inverter model including dynamic diode was used. Furthermore, 2-D EM tool was used for the motor modeling and was combined with the circuit models of battery and inverter. The simulated voltages, currents and spectrums in the motor driving system showed qualitatively meaningful results, suggesting the validness of the suggested modeling methods.

Research on artificial intelligence based battery analysis and evaluation methods using electric vehicle operation data (전기 차 운행 데이터를 활용한 인공지능 기반의 배터리 분석 및 평가 방법 연구)

  • SeungMo Hong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.385-391
    • /
    • 2023
  • As the use of electric vehicles has increased to minimize carbon emissions, the analyzing the state and performance of lithium-ion batteries that is instrumental in electric vehicles have been important. Comprehensive analysis using not only the voltage, current and temperature of the battery pack, which can affect the condition and performance of the battery, but also the driving data and charging pattern data of the electric vehicle is required. Therefore, a thorough analysis is imperative, utilizing electric vehicle operation data, charging pattern data, as well as battery pack voltage, current, and temperature data, which collectively influence the condition and performance of the battery. Therefore, collection and preprocessing of battery data collected from electric vehicles, collection and preprocessing of data on driver driving habits in addition to simple battery data, detailed design and modification of artificial intelligence algorithm based on the analyzed influencing factors, and A battery analysis and evaluation model was designed. In this paper, we gathered operational data and battery data from real-time electric buses. These data sets were then utilized to train a Random Forest algorithm. Furthermore, a comprehensive assessment of battery status, operation, and charging patterns was conducted using the explainable Artificial Intelligence (XAI) algorithm. The study identified crucial influencing factors on battery status, including rapid acceleration, rapid deceleration, sudden stops in driving patterns, the number of drives per day in the charging and discharging pattern, daily accumulated Depth of Discharge (DOD), cell voltage differences during discharge, maximum cell temperature, and minimum cell temperature. These factors were confirmed to significantly impact the battery condition. Based on the identified influencing factors, a battery analysis and evaluation model was designed and assessed using the Random Forest algorithm. The results contribute to the understanding of battery health and lay the foundation for effective battery management in electric vehicles.

Risk Assessment for Reducing Safety Accidents caused by Construction Machinery (건설장비 안전사고 저감을 위한 위험성평가)

  • Jeon, Hyun Woo;Jung, In Su;Lee, Chan Sik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2013
  • Construction machinery has been utilized to carry out construction works effectively. Using construction machinery enables a builder to reduce the time and the cost needed for the construction, but the fatal accident caused by it has been increased. This study is intended to identify risk magnitude of accident by kind of construction machinery through interviews with experts. Construction machineries surveyed in this research are excavator, tower crane, lift, mobile crane and forklift, those are the machinery which accident occurs more often than the other machinery. To evaluate the risk of the accidents identified, risk category was determined according to the US DOD system safety program (MIL-STD-882B) considering the risk degree and intensity. As a result, accident occurred in the process of material transport & handling was found to be the most dangerous. On the other hand, the accidents caused by the defective machinery and the poor safety gear were considered to be less dangerous relatively. The risk category by type of construction machinery suggested in this study is expected to provide the basic data in developing the safety guidance for construction project.

Influence of Safety Valve Pressure on Gelled Electrolyte Valve-Regulated Lead/Acid Batteries Under Deep Cycling Applications

  • Oh, Sang-Hyub;Kim, Myung-Soo;Lee, Jin-Bok;Lee, Heung-Lark;, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • Cycle life tests have been carried out to evaluate the influence of safety valve pressure on valve regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100% DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g and 235.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18% after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than $50{\mu}m$, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to be water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performances and the failure modes of the gelled electrolyte valve-regulated lead acid batteries.