• Title/Summary/Keyword: DNV-RP-C201

Search Result 3, Processing Time 0.022 seconds

Comparison of Buckling Check Formulas and Optimal Design (보강판의 좌굴 평가식에 따른 좌굴 강도 및 최적설계의 비교)

  • Jang, Beom-Seon;Cho, Ho-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.71-78
    • /
    • 2009
  • In ship design or offshore structure design, the evaluation of buckling strength (or ultimate strength) is critical to the determination of scantling of stiffened plates. For this reason, it is useful to study the effect of applying different formula or the relationship between stiffened plate with buckling utilization factor (UF). It can facilitate a designer to decide how much the scantling should be reinforced or how much can be reduced for an optimal design. This paper conducts a comparative study for three buckling check methods; DNV-Ship-Rule, DNV-RP-C201, DNV-PULS. The capacity curves and 2D contour plot for utilization factors versus bi-axial in-plane stresses are compared. The contour plots of DNV-Ship-Rule and DNV-PULS show smoothly increasing trends of UF as the applied in-plane stresses increase, however that of DNV-RP-C201 shows rapidly increasing trend as the applied stresses go beyond transverse buckling stress. A sensitivity analysis is performed to investigate the influence level of each parameter of a stiffened plate on UF. Resulting from the analysis, plate thickness is identified to be the most affective parameter to UF regardless of the buckling check methods. Based on the addressed study, optimal designs for bottom plate of 165 K tanker corresponding to three formulas are compared with each other. DNV-PULS yields 1 mm and 2 mm less thickness than DNV-Ship-Rule and DNV-RP-C201, respectively.

Design loads for floating solar photovoltaic system: Guide to design using DNV and ASCE standards

  • Gihwan Kim;Moonsu Park
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.171-179
    • /
    • 2024
  • The market of the floating solar photovoltaic system is rapidly growing around the world with the rise of renewable energy that can replace fossil energy. While the floating solar photovoltaic system is operating and being installed in several countries, the system is exposed to the risk in terms of structural safety due to the absence of the proper design guideline. In this paper, design loads suitable for the floating solar photovoltaic system are presented. Utilizing the existing reliable design standards such as ASCE 7-16 (ASCE 7-16 2016) and DNV-RP-C205 (DNV-RP-C205 2010), the appropriate design loads for the floating solar photovoltaic system are presented. The proper load combinations are also presented by putting wave load based on DNV standards (DNV-OS-C101 2015 and DNV-OS-C201 2015) into the load combinations in ASCE standards (ASCE 7-16 2016). We present the load combinations for the allowable stress design and load and resistance factor design, respectively.

Development of the Buckling Strength Assessment System based on Offshore Structure Design Code (해양구조물 설계코드에 기반한 좌굴강도 평가 시스템 개발)

  • Kim, Ul-Nyeon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.38-45
    • /
    • 2017
  • FPSO is widely used to develop deep sea oil fields and HHI has constructed ten(10) FPSOs. During these constructions, relevant structural design criteria such as yielding, buckling, fatigue, collision and impact strength were applied to verify structural safety. To apply the buckling strength evaluation for structures, the critical buckling stresses and applied stresses of relevant panels should be calculated. The plate and stiffened panels are to be idealized, which are needed much time and efforts by designers. Therefore, program development is necessary in order to evaluate the buckling strength conveniently and accurately. In this study, the buckling strength assessment system by using offshore code, DNV-RP-C201 was developed under MSC/PATRAN, pre-post program of finite element method. Graphic user interface program is written in MSC/PATRAN PCL functions. Source program to evaluate the buckling strength is developed in FORTRAN programming languages. The developed program is verified by comparing with the results of the Nauticus Hull developed by DNV Classification Society, and applied to the marine construction project conducted by Hyundai Heavy Industries LTD.

  • PDF