• Title/Summary/Keyword: DNPH 분석

Search Result 27, Processing Time 0.02 seconds

Study on Improvement in Reliability of Analysis for VOCs and Aldehydes (대기 중 휘발성유기화합물질 및 알데하이드의 분석 신뢰도 향상에 관한 고찰)

  • Lee M.D.;Lee S.U.;Lim Y.J.;Kim Y.M.;Kim S.Y.;Moon K.J.;Han J.S.;Chung I.R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.468-476
    • /
    • 2006
  • Hazardous air pollutants (HAPs) have high toxicity and bioaccurnulation potentials into human body even inbsmall amount (levels of ng/$m^3$). As the levels of HAPs might be controversial, it has been become essential to establish the analysis method for correct results. In this study, various analysis methods of VOCs and Aldehydes were compared in order to select the proper methods in our condition. Sampling and analysis method of VOCs were followed to EPA TO-14a and TO-17. VOCs were collected in absorption tube and separated by thermal desorption unit then analyzed by GC/MSD. Aldehydes were sampled in DNPH-cartridge and extracted into solution then analyzed by HPLC as the same condition of EPA TO-13a. This study also shows the results of QA/QC system of selected methods. Some experiments could be improving the data assurance blank test, calibration check, repetition precision check, the determination of detection limit and reproducibility of the retention time. Precisions of VOCs and aldehydes were ranged in 2$\sim$9% and 1$\sim$4% RSD, respectively. Recovery rate of VOCs showed variable ranges from 60 to 133.5%. MDL of VOCs and aldehydes were 0.044$\sim$0.284 ppb and 0.14$\sim$1.02 ng, respectively.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Identification of process generating formaldehyde in a furniture manufacturer (특정 가구 제조 공장의 포름알데히드 발생 공정 노출 평가)

  • Yoo, Kye-Mook;Lee, Mi-Young
    • Analytical Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.243-247
    • /
    • 2014
  • Formaldehyde is defined as carcinogen causing leukaemia, lymphoma or nasopharyngeal carcinoma at high level of exposure. Furniture-manufacturing workers can be exposed to formaldehyde, which implies serious impact on health of the workers. The authors carried out ambient monitoring of formaldehyde in the field, and identified the source of formaldehyde generated during the working process by testing the condition in the laboratory settings. After sampling formaldehyde in the air with 2,4-DNPH (2,4-dinitrophenylhydrazine) coated silica gel, we extracted formaldehyde derivative with acetonitrile and analyzed the extract using HPLC with UV detector at 360 nm. Formaldehyde was separated by ACQUITY UPLC BEH $C_{18}$ column at a flow rate of 0.5 mL/min using 45% acetonitrile as mobile phase. The workers were exposed to higher level of formaldehyde than normal air. Formaldehyde up to 0.31 ppm was detected in the process of veneer attachment, which exceeded 0.3 ppm, the ceiling value of ACGIH standard. The laboratory test of measuring formaldehyde generated from the glue and veneer used in the attachment process resulted in more formaldehyde generation as the temperature increased, and more from the veneer. Heating the veneer to $100-150^{\circ}C$ following the real condition of the manufacturing site generated 1.14-2.70 ppm of formaldehyde from the sample, which was 2-5 times higher level than Korean limit of exposure (0.5 ppm). As the workers handling and processing the veneer which was produced by wet process had high possibility to be exposed to formaldehyde, urgent improvement and management of working environment of furniture manufacturer is demanded.

Evaluation of sampling and analytical method for emission experiment of pollutants in building materials using small chamber (소형챔버를 이용한 건축자재 오염물질 방출시험방법 평가)

  • Lee, Suk-Jo;Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.344-354
    • /
    • 2005
  • This study was carried out to evaluate the performance of a small chamber sampling and analytical method for the measurement of total volatile organic compounds (TVOC) and formaldehyde (HCHO) emission from building materials. While VOC was determined by the adsorbent tube sampling and sequential thermal desorption coupled with GC/MSD analysis, formaldehyde sampled with DNPH-silica cartridge was analyzed by HPLC. Wide-range performance criteria such as repeatability, desorption efficiency, emission chamber recovery test, duplicate precision, breakthrough volume and method detection limits were investigated for the evaluation of small chamber method. The overall precision of the small chamber sampling and analytical methods was estimated within 20~30% for target compounds. In conclusion, this study demonstrated that the small chamber sampling and analytical method can be reliably applied for the measurement of building materials pollutants.

Characteristics of pollutant emission from wallpapers - Around TVOC and HCHO - (벽지에서 발생되는 오염물질 방출특성 - TVOC와 HCHO를 중심으로 -)

  • Jang, Seong-Ki;Kim, Mi-Hyun;Lee, Hong-Suk;Lim, Jun-Ho;Jang, Mee;Seo, Soo-Yun
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.542-551
    • /
    • 2005
  • This study is to investigate the characteristics of emission concentration according to wallpaper sort and emission time using small chamber method. The target compounds included 45 VOCs and formaldehyde, which were respectively determined by adsorption sampling and thermal desorption coupled with GC/MS method, and by sampling in DNPH cartridge and HPLC method. The emission factor of TVOC and HCHO was detected to $1.1mg/m^2{\cdot}h$ and $0.01mg/m^2{\cdot}h$ respectively, and the wallpapers of 25 satisfied emission standard. TVOC emission factor appeared in order of the concentration of PVC, natural, and Non-PVC wallpaper, while HCHO was detected very low concentration without relation to wallpaper sort. The paraffin hydrocarbons appeared to be the most contributable class of hydrocarbons in terms of their concentrations, followed by aromatics, and olefins, halogenated hydrocarbons was not detected. PVC wallpapers plentifully emitted TVOC above other wallpapers, and toluene was showed higher concentration of 10 times than natural wallpaper. In addition to, emission factor according to elapse was gradually decreased.

Studies on the Processing of Powdered Katsuobushi and Its Flavor Constituents 3. Volatile Flavor Components of Powdered Katsuobushi (분말가쓰오부시의 제조 및 풍미성분에 관한 연구 3. 분말가쓰오부시의 향기성분)

  • OH Kwang-Soo;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.4
    • /
    • pp.169-176
    • /
    • 1989
  • Volatile flavor components in powdered Katsuobushi were simultaneous trapped by steam distillation-extraction method, and these were fractionated into the neutral, the phenolic, the acidic and the basic fraction. Volatile flavor components in these fraction were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The whole steam volatile concentrate consisted of $48\%$ neutral fraction(NF), $35\%$ phenolic fraction(PF), $12\%$ acidic fraction(AF) and $5\%$ basic fraction(BF). Thirty components such as 8 hydrocarbons, 8 aldehydes, 6 furans, 5 alcohols and 3 ketones were identified from NF. And sixteen components such as phenol, guaiacol, dimethoxy phenol, eugenol in PF, twelve components such as propionic, butanoic, isopentanoic, n-hexanoic, heptanoic, octanoic acid in AF, ten components such as 2,6-dimethylpyrazine, 2-nethylpyridine, 2,4-dimethylthiaBole in BF were identified. NF and PF gave a much higher yield than others and were assumed to be indispensable for the reproduction of aroma of powdered Katsuobushi. It was also identified eight components of volatile carbonyl compounds such as ethanal, propanal, butanal, pentanal by 2,4-DNPH method.

  • PDF

Concentration of Formaldehyde and Acetaldehyde depending on the Time of Storage into Mineral Water (먹는샘물의 보관 기간에 따른 formaldehyde 및 acetaldehyde의 농도 변화)

  • Lee, Youn-Hee;Lee, Jun-Bae;Park, Ju-Hyun;Choi, Ja-Yoon;Ahn, Kyung-Hee;Ahn, Hye-Sil;Kwon, Oh-Sang;Kim, Tae-Seung;Han, Jin-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • BACKGROUND: According to Korean regulations, bottled waters (BWs) can not be treated with chemical disinfectants like chlorine, so UV and ozone disinfection is applied. During the past several years, chemicals were detected in some BWs, and the public was concerned about the safety of BWs. METHODS AND RESULTS: Mineral waters were stored for 180 days at $25^{\circ}C$ and $50^{\circ}C$, tested acetaldehyde and formaldehyde by HPLC. When mineral waters were put in a PET bottles, the formaldehyde level ranged from 5 to $66{\mu}g/L$ during 180 days at $50^{\circ}C$. While the acetaldehyde level ranged from 31 to $221{\mu}g/L$, it was low than $16{\mu}g/L$ in glass bottle. CONCLUSION(s): This result showed that formaldehyde and acetaldehyde were detected higher in PET bottles than glass bottles, these also increased depending on the time of storage. Concentration of formaldehyde and acetaldehyde could be significantly influenced by the time of storage and temperature.