• 제목/요약/키워드: DNN 모델

검색결과 192건 처리시간 0.029초

태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석 (Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN)

  • 홍정조;오용선
    • 사물인터넷융복합논문지
    • /
    • 제8권3호
    • /
    • pp.55-61
    • /
    • 2022
  • 지구 온난화의 주범인 온실가스 감축을 위해 UN은 1992년 기후변화협약을 체결하였다. 우리나라도 온실가스 감축을 위해 재생에너지 보급 확대 정책을 펼치고 있다. 태양에너지를 이용한 재생에너지 개발의 확대는 풍력과 태양광 발전의 확대로 이어졌다. 기상 상황에 영향을 많이 받는 재생에너지 개발의 확대는 전력계통의 수요공급관리에 어려움이 발생하고 있다. 이러한 문제를 해결하기 위해 전력중개시장을 도입하게 되었다. 따라서 전력중개시장 참여를 위해서는 발전량 예측이 필요하다. 본 논문에서는 자체 개발한 예측 시스템을 활용하여 연축태양광발전소에 대하여 분석하였다. 현장 일사량(모델 1)과 기상청 일사량(모델 2)을 적용한 결과 모델 2가 3% 정도 높은 것을 확인하였다. 또한, DNN과 RNN 모델을 비교 분석한 결과 DNN 모델이 예측 정확도가 1.72% 정도 향상되는 것을 확인하였다.

Deep Neural Network를 활용한 초미세먼지 농도 예측에 관한 연구 (A Study on Prediction of PM2.5 Concentration Using DNN)

  • 최인호;이원영;은범진;허정숙;장광현;오종민
    • 환경영향평가
    • /
    • 제31권2호
    • /
    • pp.83-94
    • /
    • 2022
  • 본 연구는 국가측정망(에어코리아)에서 제공하는 2017년, 2019년 및 2020년도 대기질확정 데이터를 이용하여 Deep Neural Network(DNN) 모델을 학습하고, 2016년과 2018년도 데이터를 이용하여 학습된 모델을 평가·검증하였다. 피어슨 상관계수 0.2를 기준으로 SO2, CO, NO2, PM10 항목을 독립변수로 하여 초기 모델링을 진행하였고, 예측의 정확도를 높이기 위한 방법으로 시계열적 요소를 반영한 월별 모델링(개선모델)을 진행하여 초기모델과 비교·분석하였다. 분석에 사용한 지표는 RMSE(Root mean square error) 방법으로 오차를 계산하였으며, 예측 결과 초기모델의 RMSE값은 5.78로 국가측정망의 예측이동 평균모델의 결과(10.77)와 비교하여 초기모델에서 약 46% 오차가 감소하였다. 또한, 개선모델의 경우, 초기모델 대비 11월 모델을 제외한 모든 월별모델에서 정확도 향상이 있었다. 따라서, 본 연구에서는 DNN 모델링이 PM2.5 농도 예측에 효과적인 방법임을 제안할 수 있었으며, 향후 추가적인 독립변수 선정 및 시계열 요소를 고려한 방법으로 모델의 정확도 개선 가능성을 확인할 수 있었다.

OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교 (Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose)

  • 손남례;정민아
    • 스마트미디어저널
    • /
    • 제12권7호
    • /
    • pp.59-67
    • /
    • 2023
  • 최근 인간의 자세와 행동을 추적하는 행동 분석 연구가 활발해지고 있다. 특히 2017년 CMU에서 개발한 오픈소스인 오픈포즈(OpenPose)는 사람의 외모와 행동을 추정하는 대표적인 방법이다. 오픈포즈는 사람의 키, 얼굴, 손 등의 신체부위를 실시간으로 감지하고 추정할 수 있어 스마트 헬스케어, 운 동 트레이닝, 보안시스템, 의료 등 다양한 분야에 적용될 수 있다. 본 논문에서는 헬스장에서 사용자들이 가장 많이 운동하는 Squat, Walk, Wave, Fall-down 4개 동작을 오픈포즈기반 딥러닝인 DNN과 CNN을 이용하여 운동 동작 분류 방법을 제안한다. 학습데이터는 녹화영상 및 실시간으로 카메라를 통해 사용자의 동작을 캡처해서 데이터 셋을 수집한다. 수집된 데이터 셋은 OpenPose을 이용하여 전처리과정을 진행하고, 전처리과정이 완료된 데이터 셋은 본 논문에서 제안한 DNN 및 CNN 모델 이용하여 운동 동작 분류를 학습한다. 제안한 모델에 대한 성능 오차는 MSE, RMSE, MAE를 사용한다. 성능 평가 결과, 제안한 DNN 모델 성능이 제안한 CNN 모델보다 우수한 것으로 나타났다.

이중 DNN을 이용한 가맹점 추천 시스템 (DoubleDNN) (Merchant Recommender System using Double DNN)

  • 칼리나 바야르체첵;나광택;이주홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.390-393
    • /
    • 2019
  • 은행과 신용카드 업계에 있어, 고객의 다음 신용 카드 사용처(다음 방문 가맹점)를 예측할 수 있다면 고객의 라이프 스타일을 파악 할 수 있으며, 여러 프로모션과 비즈니스 기회를 포착할 수 있어 매출 증대를 꾀할 수 있다. 우리가 제안하는 모델은 고객이 다음에 방문할 가맹점을 예측/추천하는 것을 목표로 한다. 가맹점 방문과 같이 순차적으로 발생하는 이벤트에는 노이즈가 있을 수 있다. 이 노이즈를 제거하기 위해 두 개의 신경망을 이용한 DoubleDNN을 제안한다. 실험은 BC카드사의 데이터분포를 따르는 인공 생성된 신용카드 사용내역 데이터를 이용하였으며, DoubleDNN은 기존의 다른 추천 모델보다 좋은 성능을 보였다.

DNN 기반의 미세먼지 농도별 이진 분류 모델 (DNN based Binary Classification Model by Particular Matter Concentration)

  • 이종성;정용진;오창헌
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.277-279
    • /
    • 2021
  • 미세먼지 예측의 경우 농도에 따른 특성으로 인해 예측 모델의 학습이 잘 이루어지지 않는 문제가 있다. 이러한 문제를 해결하기 위해 저농도와 고농도에 대한 개별 예측 모델을 구분하여 설계할 필요가 있다. 따라서 미세먼지 농도를 저농도와 고농도로 구분하기 위한 분류 모델이 필요하다. 본 논문은 미세먼지 농도 80㎍/m3을 기준으로 저농도와 고농도를 구분하기 위한 분류 모델을 제안한다. 분류 모델의 알고리즘은 DNN을 사용하였으며, 하이퍼 파라미터 탐색 후 최적의 파라미터를 적용하여 분류 모델을 설계하였다. 모델의 성능 평가 결과, 저농도 분류의 경우 97.54%, 고농도 분류의 경우 85.51%의 분류 성능을 확인하였다.

  • PDF

글로벌 큐를 통한 임베디드 멀티코어 프로세서의 멀티 DNN 연산 성능 향상 (Improving Multi-DNN Computational Performance of Embedded Multicore Processors through a Global Queue)

  • 조호진;김명선
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.714-721
    • /
    • 2020
  • DNN은 로봇 및 자율주행차 등의 임베디드 시스템에서 활용 분야가 넓어지고 있다. 최근 높은 인식 정확도를 위하여 연산 복잡도가 크게 증가되고 비주기적으로 다수의 DNN을 사용하는 형태가 증가되고 있다. 따라서 임베디드 환경에서 다수의 DNN을 처리할 수 있는 능력은 중요한 이슈가 되었다. 이에 따라 멀티코어 기반 플랫폼들이 출시되고 있다. 하지만 대부분의 DNN 모델들은 배치 프로세스로 운용되어, 여러 DNN이 함께 멀티코어에서 운용될 때 어떻게 코어에 할당되느냐에 따라 각 DNN 간 수행시간 편차가 클 수 있고 시스템 전체적인 DNN 수행 시간이 길어질 수 있다. 본 논문에서는 각 DNN들을 배치 형태가 아닌 레이어별로 재구성한 후 글로벌 큐를 통하여 멀티코어에 분산시킬 수 있는 프레임워크를 제공하여 이러한 문제를 해결한다. 실험 결과 전체 DNN 수행 시간은 31% 감소하였고 다수의 동일 DNN을 운용 시 그 수행시간 편차는 최대 95.1% 감소하였다.

DNN을 이용한 오디오 이벤트 검출 성능 비교 (Comparison of Audio Event Detection Performance using DNN)

  • 정석환;정용주
    • 한국전자통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.571-578
    • /
    • 2018
  • 최근 딥러닝 기법이 다양한 종류의 패턴 인식에 있어서 우수한 성능을 보이고 있다. 하지만 소규모의 훈련데이터를 이용한 분류 실험에 있어서 전통적으로 사용되던 머신러닝 기법에 비해서 DNN의 성능이 우수한지에 대해서는 다소 간의 논란이 있어 왔다. 본 연구에서는 오디오 검출에 있어서 전통적으로 사용되어 왔던 GMM, SVM의 성능과 DNN의 성능을 비교하였다. 동일한 데이터에 대해서 인식실험을 수행한 결과, 전반적인 성능은 DNN이 우수하였으나 세그먼트 기반의 F-score에서 SVM이 DNN에 비해 우수한 성능을 보임을 알 수 있었다.

심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류 (Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model)

  • 문갑수;김경섭;정윤재
    • 한국지리정보학회지
    • /
    • 제23권3호
    • /
    • pp.252-262
    • /
    • 2020
  • 원격탐사 분야에서 토지피복분류에는 머신러닝 기반의 SVM 모델이 대표적으로 활용되고 있는 한편, 신경망 모델을 이용한 연구도 지속적으로 수행되고 있다. 다목적실용위성의 고해상도 영상을 이용한 연구는 미흡한 실정이며, 따라서 본 연구에서는 고해상도 KOMPSAT-3 위성영상을 이용하여 신경망 모델의 토지피복분류 정확도를 평가하고자 하였다. 경주시 인근 해안지역의 위성영상을 취득하여 훈련자료를 제작하고, 물과 식생 및 육지의 세 항목에 대해 SVM, ANN 및 DNN 모델로 토지피복을 분류하였다. 분류 결과의 정확도를 오차 행렬을 통해 정량적으로 평가한 결과 DNN 모델을 활용한 토지피복분류가 92.0%의 정확도로 가장 우수한 결과를 나타냈다. 향후 다중 시기의 위성영상을 통해 훈련자료를 보완하고, 다양한 항목에 대한 분류를 수행 및 검증한다면 연구의 신뢰성을 높일 수 있을 것으로 판단된다.

컴퓨팅 부하 예측 DNN 모델 기반 디지털 트윈 소프트웨어 개발 프레임워크 (A Digital Twin Software Development Framework based on Computing Load Estimation DNN Model)

  • 김동연;윤성진;김원태
    • 방송공학회논문지
    • /
    • 제26권4호
    • /
    • pp.368-376
    • /
    • 2021
  • 인공지능 클라우드는 학습된 모델 공유 및 실행 환경을 제공하여 인공지능 기술과 제어 기술을 융합하는 자율 사물 개발을 지원한다. 기존 자율 사물 개발 기술은 인공지능 모델의 정확도만을 고려하여 은닉 계층 수 및 커널 수 증가 등 모델의 복잡성을 증가시켜 결과적으로 많은 연산량을 요구하게 한다. 자원 제약적 컴퓨팅 환경은 해당 모델이 필요로 하는 충분한 자원을 제공할 수 없어 자율 사물의 실시간성 장애를 발생시킬 수 있다. 본 논문은 컴퓨팅 환경에 최적화된 인공지능 모델을 선택하는 디지털 트윈 소프트웨어 개발 프레임워크를 제안한다. 제안 프레임워크는 DNN 기반 부하 예측 모델을 활용하여 제어 소프트웨어를 개발한다. 부하 예측 모델은 디지털 트윈을 활용하여 인공지능 모델의 부하를 예측하여 특정 컴퓨팅 환경에 최적의 모델 선택을 지원한다. 대표적인 CNN 모델을 활용한 부하 예측 실험으로 제안 부하 예측 DNN 모델이 수식 기반 부하 예측 대비 최대 20%의 오류를 보임을 확인했다.

External knowledge를 사용한 LFMMI 기반 음향 모델링 (LFMMI-based acoustic modeling by using external knowledge)

  • 박호성;강요셉;임민규;이동현;오준석;김지환
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.607-613
    • /
    • 2019
  • 본 논문은 external knowledge를 사용한 lattice 없는 상호 정보 최대화(Lattice Free Maximum Mutual Information, LF-MMI) 기반 음향 모델링 방법을 제안한다. External knowledge란 음향 모델에서 사용하는 학습 데이터 이외의 문자열 데이터를 말한다. LF-MMI란 심층 신경망(Deep Neural Network, DNN) 학습의 최적화를 위한 목적 함수의 일종으로, 구별 학습에서 높은 성능을 보인다. LF-MMI에는 DNN의 사후 확률을 계산하기 위해 음소의 열을 사전 확률로 갖는다. 본 논문에서는 LF-MMI의 목적식의 사전 확률을 담당하는 음소 모델링에 external knowlege를 사용함으로써 과적합의 가능성을 낮추고, 음향 모델의 성능을 높이는 방법을 제안한다. External memory를 사용하여 사전 확률을 생성한 LF-MMI 모델을 사용했을 때 기존 LF-MMI와 비교하여 14 %의 상대적 성능 개선을 보였다.