• Title/Summary/Keyword: DNN 모델

Search Result 192, Processing Time 0.025 seconds

Battery-loaded power management algorithm of electric propulsion ship based on power load and state learning model (전력 부하와 학습모델 기반의 전기추진선박의 배터리 연동 전력관리 알고리즘)

  • Oh, Ji-hyun;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1202-1208
    • /
    • 2020
  • In line with the current era of the 4th Industrial Revolution, it is necessary to prepare for the future by integrating AI elements in the ship sector. In addition, it is necessary to respond to this in the field of power management for the appearance of autonomous ships. In this study, we propose a battery-linked electric propulsion system (BLEPS) algorithm using machine learning's DNN. For the experiment, we learned the pattern of ship power consumption for each operation mode based on the ship data through LabView and derived the battery status through Python to check the flexibility of the generator and battery interlocking. As a result of the experiment, the low load operation of the generator was reduced through charging and discharging of the battery, and economic efficiency and reliability were confirmed by reducing the fuel consumption of 1% of LNG.

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.

Impact of Data Continuity in EEG Signal-based BCI Research (뇌파 신호 기반 BCI 연구에서 데이터 연속성의 영향)

  • Youn-Sang Kim;Ju-Hyuck Han;Woong-Sik Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • This study conducted a comparative experiment on the continuity of time series data and the classification performance of artificial intelligence models. In BCI research using EEG signals, the performance of behavior and thought classification improved as the continuity of the data decreased. In particular, LSTM achieved a high performance of 0.8728 on data with low continuity, and DNN showed a performance of 0.9178 when continuity was not considered. This suggests that data without continuity may perform better. Additionally, data without continuity showed better performance in task classification. These results suggest that BCI research based on EEG signals can perform better by showing various data characteristics through shuffling rather than considering data continuity.

Clock Glitch-based Fault Injection Attack on Deep Neural Network (Deep Neural Network에 대한 클럭 글리치 기반 오류 주입 공격)

  • Hyoju Kang;Seongwoo Hong;Youngju Lee;Jeacheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.855-863
    • /
    • 2024
  • The use of Deep Neural Network (DNN) is gradually increasing in various fields due to their high efficiency in data analysis and prediction. However, as the use of deep neural networks becomes more frequent, the security threats associated with them are also increasing. In particular, if a fault occurs in the forward propagation process and activation function that can directly affect the prediction of deep neural network, it can have a fatal damage on the prediction accuracy of the model. In this paper, we performed some fault injection attacks on the forward propagation process of each layer except the input layer in a deep neural network and the Softmax function used in the output layer, and analyzed the experimental results. As a result of fault injection on the MNIST dataset using a glitch clock, we confirmed that faut injection on into the iteration statements can conduct deterministic misclassification depending on the network parameters.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

Recognition of Overlapped Sound and Influence Analysis Based on Wideband Spectrogram and Deep Neural Networks (광역 스펙트로그램과 심층신경망에 기반한 중첩된 소리의 인식과 영향 분석)

  • Kim, Young Eon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.421-430
    • /
    • 2018
  • Many voice recognition systems use methods such as MFCC, HMM to acknowledge human voice. This recognition method is designed to analyze only a targeted sound which normally appears between a human and a device one. However, the recognition capability is limited when there is a group sound formed with diversity in wider frequency range such as dog barking and indoor sounds. The frequency of overlapped sound resides in a wide range, up to 20KHz, which is higher than a voice. This paper proposes the new recognition method which provides wider frequency range by conjugating the Wideband Sound Spectrogram and the Keras Sequential Model based on DNN. The wideband sound spectrogram is adopted to analyze and verify diverse sounds from wide frequency range as it is designed to extract features and also classify as explained. The KSM is employed for the pattern recognition using extracted features from the WSS to improve sound recognition quality. The experiment verified that the proposed WSS and KSM excellently classified the targeted sound among noisy environment; overlapped sounds such as dog barking and indoor sounds. Furthermore, the paper shows a stage by stage analyzation and comparison of the factors' influences on the recognition and its characteristics according to various levels of noise.

Development of a pipe burst detection model using large consumer's smart water meter and pressure data (대수용가 스마트미터와 수압 데이터를 이용한 소블록 내 관 파손사고 감지모델 개발)

  • Kyoung Pil Kim;Wan Sik Yu;Shin Uk Kang;Doo Yong Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.521-521
    • /
    • 2023
  • 지방상수도의 관 파손사고 감지 및 누수관리 방법에는 블록시스템 구축을 통한 소블록별 야간최소유량 감시방법이 가장 대표적이다. 야간최소유량은 새벽 2시와 4시 사이의 인구 활동 비율이 가장 낮은 새벽 시간대에 소블록에 공급된 유량을 의미하며, 대부분 유량 성분은 누수량일 것이라는 가정에서 출발한다. 그러나 아파트 중심의 주거 형태를 보이는 도심지의 경우, 새벽 시간대에도 다량의 물수요가 비정기적으로 발생하고 있어 관망의 이상 여부를 감시하기 위한 관리기준으로서 야간최소유량을 이용하기에는 높은 일간 변동성에 따른 한계가 있다고 할 수 있다. 즉, 야간최소유량은 관 파손사고 발생의 감시보다는 관로 연결 또는 급수전 분기 부위에서 발생하는 미량의 누수가 수개월에 걸쳐 누적되는 장기추세를 분석하여 누수탐사반의 투입 시점을 결정하기 위한 근거를 제시하기 위한 목적으로 사용되며, 아직까지 관 파손사고의 발생은 자체적인 감지보다는 민원에 의해 인지되는 경우가 많다. 최근, 스마트관망 구축사업(SWM) 등을 통해 관 파손 및 누수 감지를 위한 청음식 누수감지센서가 소블록 내 도입되고 있으나, 초기 시설투자에 큰 비용이 수반되며 주변 소음과 배터리 전원방식의 한계로 인하여 새벽 시간대에만 분석이 제한적으로 적용되는 경우가 많아 이 역시도 상시적인 관 파손사고의 감시기술이라 보기는 어렵다. 본 연구에서는 소블록 유입점에서의 유량·압력과 소블록 내에 설치된 대수용가 스마트미터, 그리고 사고감지를 위한 수압계 사이의 평상시 수리적 균형을 학습한 DNN(Deep Neural Network) 모델을 이용하여 관 파손사고를 실시간 감지하는 모델 개발연구를 수행하였다. 모델은 관 파손사고 감지를 위한 수압계의 최적 위치와 대수를 결정하기 위한 모듈과 관 파손사고 감지모듈로 구성되며, 1개 소블록 Test-Bed를 구축하여 모델을 생성하고 PDD 관망해석 모델을 통해 생성된 가상의 사고에 대한 감지 여부로서 개발 모델의 감지성능을 평가하였다.

  • PDF

Resource-Efficient Object Detector for Low-Power Devices (저전력 장치를 위한 자원 효율적 객체 검출기)

  • Akshay Kumar Sharma;Kyung Ki Kim
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2024
  • This paper presents a novel lightweight object detection model tailored for low-powered edge devices, addressing the limitations of traditional resource-intensive computer vision models. Our proposed detector, inspired by the Single Shot Detector (SSD), employs a compact yet robust network design. Crucially, it integrates an 'enhancer block' that significantly boosts its efficiency in detecting smaller objects. The model comprises two primary components: the Light_Block for efficient feature extraction using Depth-wise and Pointwise Convolution layers, and the Enhancer_Block for enhanced detection of tiny objects. Trained from scratch on the Udacity Annotated Dataset with image dimensions of 300x480, our model eschews the need for pre-trained classification weights. Weighing only 5.5MB with approximately 0.43M parameters, our detector achieved a mean average precision (mAP) of 27.7% and processed at 140 FPS, outperforming conventional models in both precision and efficiency. This research underscores the potential of lightweight designs in advancing object detection for edge devices without compromising accuracy.

Deep-Learning based PHM Embedded System Using Noise·Vibration (소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템)

  • Lee, Se-Hoon;Sin, Bo-Bae;Kim, Ye-Ji;Kim, Ji-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

CNN based Actuator Fault Cause Classification System Using Noise (CNN 기반의 소음을 이용한 원동 구동장치 고장 원인 분류 시스템)

  • Lee, Se-Hoon;Kim, Ji-Seong;Shin, Bo-Bae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.7-8
    • /
    • 2018
  • 본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.

  • PDF