• 제목/요약/키워드: DNA-dependent

검색결과 1,346건 처리시간 0.025초

The Heterochromatin Protein 1 (HP1) Family: Put Away a Bias toward HP1

  • Kwon, So Hee;Workman, Jerry L.
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.217-227
    • /
    • 2008
  • Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein with dose-dependent effect on gene silencing. The HP1 family is evolutionarily highly conserved and there are multiple members within the same species. The multi-functionality of HP1 reflects its ability to interact with diverse nuclear proteins, ranging from histones and transcriptional co-repressors to cohesion and DNA replication factors. As its name suggests, HP1 is well-known as a silencing protein found at pericentromeres and telomeres. In contrast to previous views that heterochromatin is transcriptionally inactive; noncoding RNAs transcribed from heterochromatic DNA repeats regulates the assembly and function of heterochromatin ranging from fission yeast to animals. Moreover, more recent progress has shed light on the paradoxical properties of HP1 in the nucleus and has revealed, unexpectedly, its existence in the euchromatin. Therefore, HP1 proteins might participate in both transcription repression in heterochromatin and euchromatin.

Glycyrrhizin이 Mel/ret transgenic mice에서의 melanoma 세포의 apoptosis에 미치는 영향 (Effect of Glycyrrhizin on the Aoptosis of Melanoma Cells in Mel/ret Transgenic Mice)

  • 오찬호;염정열
    • KSBB Journal
    • /
    • 제13권6호
    • /
    • pp.718-723
    • /
    • 1998
  • The effect of glycyrrhizin on melanoma cells was investigated. DNA fragmentation in cultured melanoma cells was promoted by the addition of glycyrrhizin in a dose dependent manner. Administration(i.m.) of glycyrrhizin to Mel/ret transgenic mice resulted in apoptosis induction, reduction of mitochondrial transmembrane potential in melanoma cells. Decreased B220+ B cells were recovered by the treatment of glycyrrhizin in splenocytes and mesenteric lymph node cells, while Thy-1+ T cells were not influenced. Results suggested that glycyrrhizin acted as an inducer of apoptosis of melanoma cells and an immuno-potentiator via recovered B lymphocyte population in Mel/ret transgenic mice.

  • PDF

Identification of a Deoxyribonuclease I Inhibitor from a Phage-Peptide Library

  • Choi, Suk-Jung;Sperinde, Jeffrey J.;Szoka, Francis C. Jr.
    • Molecules and Cells
    • /
    • 제19권1호
    • /
    • pp.54-59
    • /
    • 2005
  • Deoxyribonuclease I (DNase I) is a divalent cation dependent endonuclease and thought to be a significant barrier to effective gene delivery. The only known DNase I-specific inhibitor is monomeric actin which acts by forming a 1:1 complex with DNase I. Its use, however, is restricted because of tendency to polymerize under certain conditions. We screened two random phage peptide libraries of complexity $10^8$ and $10^9$ for DNase I binders as candidates for DNase I inhibitors. A number of DNase I-binding peptide sequences were identified. When these peptides were expressed as fusion proteins with Escherichia coli maltose binding protein, they inhibited the actin-DNase I interaction ($IC_{50}=0.1-0.7{\mu}M$) and DNA degradation by DNase I ($IC_{50}=0.8-8{\mu}M$). Plasmid protection activity in the presence of DNase I was also observed with the fusion proteins. These peptides have the potential to be a useful adjuvant for gene therapy using naked DNA.

IM-9세포에 있어서 세라마이드에 의한 세포주기 변화와 아포프토시스 (Cell Cycle Alteration and Apoptosis Induced by Ceramide in IM-9 Cells)

  • 윤기호;최관수;김원호;최경희;김미영
    • 약학회지
    • /
    • 제39권6호
    • /
    • pp.689-694
    • /
    • 1995
  • Sphingolipids play important roles in cell regulation and signal transduction. Recently, a sphinogomyelin cycle has been described in which activation of neutral sphingomyelinase leads to the breakdown of sphingomyelin and the generation of ceramide. Ceramide, in turn, has emerged as a candidate intracellular mediator for the action of certain cell agonists and has multiple biologic actions. Ceramide is a potent suppressor of cell growth and an inducer of apoptosis. The present studies show that exposure of IM-9 cells to ceramide resulted in internucleosomal cleavage of DNA, yielding laddered patterns of oligonucleosomal fragments characteristic of apoptosis. DNA fragmentation induced by ceramide was also confirmed by diphenylamine assay. The effect of ceramide on cell cycle progression was also studied. The addition of ceramide increase G$_{1}$ phase distribution in cell cycle. Cell cycle-related cyclin D$_{1}$ gene expression was decreased in a time-dependent manner. These results suggest that apoptosis induced by ceramide is related to cell cycle associated with the alteration of cell cycle in IM-9 cells.

  • PDF

Mild Hyperthermia-induced Cell Cycle Arrest under P53-dependent Pathway in Human Cells

  • Jung, Hwa-Jin;Yim, Sung-Vin;Park, Seungjoon;Jung, Joo-Ho;Jung, Jee-Chang;Seo, Young-Rok
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.114-114
    • /
    • 2003
  • p53 has identified as a tumor suppressor protein to protect cells from DNA damage. p53, also well known for a transcription factor, can activate genes such as p21, bax, gadd45 and induce a number of the responses such as differentiation, senescence, DNA repair, apoptosis and the inhibition of angiogenesis to protect cells. Many mechanisms of p53 activation have been studied.(omitted)

  • PDF

Advances in Accurate Microbial Genome-Editing CRISPR Technologies

  • Lee, Ho Joung;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.903-911
    • /
    • 2021
  • Previous studies have modified microbial genomes by introducing gene cassettes containing selectable markers and homologous DNA fragments. However, this requires several steps including homologous recombination and excision of unnecessary DNA regions, such as selectable markers from the modified genome. Further, genomic manipulation often leaves scars and traces that interfere with downstream iterative genome engineering. A decade ago, the CRISPR/Cas system (also known as the bacterial adaptive immune system) revolutionized genome editing technology. Among the various CRISPR nucleases of numerous bacteria and archaea, the Cas9 and Cas12a (Cpf1) systems have been largely adopted for genome editing in all living organisms due to their simplicity, as they consist of a single polypeptide nuclease with a target-recognizing RNA. However, accurate and fine-tuned genome editing remains challenging due to mismatch tolerance and protospacer adjacent motif (PAM)-dependent target recognition. Therefore, this review describes how to overcome the aforementioned hurdles, which especially affect genome editing in higher organisms. Additionally, the biological significance of CRISPR-mediated microbial genome editing is discussed, and future research and development directions are also proposed.

Caspase-3-mediated cleavage of Cdc6 induces nuclear localization of truncated Cdc6 and apoptosis

  • Yim, Hyung-Shin;Jin, Ying-Hua;Park, Byoung-Duck;Lee, Seung-Ki
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.71.1-71.1
    • /
    • 2003
  • We show that Cdc6, an essential initiation factor for DNA replication, undergoes caspase-3-mediated cleavage in the early stages of apoptosis in HeLa cells and SK-HEP-1 cells induced by etoposide, paclitaxel, ginsenoside Rh2, or TRAIL. The cleavage occurs at the SEVD$\^$442//G motif and generates an N-terminal truncated Cdc6 fragment (p49-tCdc6) that lacks the carboxy-terminal nuclear export sequence (NES). Cdc6 is known to be phosphorylated by cyclin A-Cyclin A-dependent kinase 2 (Cdk2), an event that promotes its exit from the nucleus and probably blocks it from initiating inappropriate DNA replication. (omitted)

  • PDF

MC3T3-E1 세포의 골기질 단백질 발현에 대한 혈소판유래성장인자-BB의 효과 (The Effects of Platelet- Derived Growth Factor-BB on the Expression of Bone Matrix Protein in the MC3T3-E1 Cells)

  • 김묘선;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.347-360
    • /
    • 2000
  • Bone remodeling results from the combined process of bone resorption and new bone formation which is regulated in part by some of the polypeptide growth factors such as platelet derived growth factor(PDGF), which has been known to be an important local regulator of bone cell activity and participate in normal bone remodeling. This process includes strictly regulated gene expression of several bone matrix proteins such as type I collagen and osteopontin, a 44 kDa phosphorylated glycoprotein, which has important roles in bone formation. The purpose of this study is to evaluate the effecs of PDGF-BB on the mRNA expression of bone matrix protein, type I collagen and osteopontin, in MC3T3- E1 cell culture. Cells were seeded at $5{\times}10^5$ cells in 10 ml of minimum essential medium alpha(${\alpha}-MEM$) containig 10% fetal bovine serum, 10 mM beta glycerophosphate. 0.1, 1, 10 ng/ml PDGF-BB were added to the cells for the day 3, 7, 14, 21, 28 and cultured for 24 hours. Type I collagen cDNA, Hf677, and osteopontin cDNA were used as probes for northern blot analysis. Total cellular RNA was purified at indicated day and northern blot analysis was performed. The results were as follows : Type I collagen mRNA expressions were higher at the day 3 and 7, and lower in the day 14, 21 in the control groups. In the experimental groups, mRNA expressions were increased when 0.1 ng/ml PDGF-BB were added on the day 3, 7, 21, and decreased in dose-dependent manner on the day 14, decreased at all added dose on the day 28. Osteopontin mRNA expressions were highest in the day 21 groups and lowest in the day 14 groups in the control groups. Interesting results were shown in the day 14 and 21 groups. We found that osteopontin mRNA level was increased in dose dependent manner in the day 14 groups, and decreased dose dependent manner in the day 21 groups. In conclusion, PDGF-BB may have various control effects on type I mRNA expression in the growth and differentiation process of MC3T3-E1 cells and may have contrary regulatory effects on osteopontin mRNA expression. For examples, when the baseline level of osteopontin mRNA was low, as in the day 14, PDGF-BB up-regulated osteopontin mRNA expression in dose dependent manner, and when the baseline level was high as in the day 21, PDGF-BB down-regulated dose dependent manner. Thus, it may be useful for clinical application in periodontal regeneration procedure if further study were performed.

  • PDF

Improvement Characteristics of Bio-active Materials Coated Fabric on Rat Muscular Mitochondria

  • Lee, Donghee;Kim, Young-Won;Kim, Jung-Ha;Yang, Misuk;Bae, Hyemi;Lim, Inja;Bang, Hyoweon;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Yong-Hwan;Park, Hyo-Suk;Park, Eun-Ho;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.283-289
    • /
    • 2015
  • This study surveys the improvement characteristics in old-aged muscular mitochondria by bio-active materials coated fabric (BMCF). To observe the effects, the fabric (10 and 30%) was worn to old-aged rat then the oxygen consumption efficiency and copy numbers of mitochondria, and mRNA expression of apoptosis- and mitophagy-related genes were verified. By wearing the BMCF, the oxidative respiration significantly increased when using the 30% materials coated fabric. The mitochondrial DNA copy number significantly decreased and subsequently recovered in a dose-dependent manner. The respiratory control ratio to mitochondrial DNA copy number showed a dose-dependent increment. As times passed, Bax, caspase 9, PGC-$1{\alpha}$ and ${\beta}$-actin increased, and Bcl-2 decreased in a dose-dependent manner. However, the BMCF can be seen to have had no effect on Fas receptor. PINK1 expression did not change considerably and was inclined to decrease in control group, but the expression was down-regulated then subsequently increased with the use of the BMCF in a dose-dependent manner. Caspase 3 increased and subsequently decreased in a dose-dependent manner. These results suggest that the BMCF invigorates mitophagy and improves mitochondrial oxidative respiration in skeletal muscle, and in early stage of apoptosis induced by the BMCF is not related to extrinsic death-receptor mediated but mitochondria-mediated signaling pathway.

간암 세포주 HepG2에 대한 대황 추출물의 항암효과 (Anticancer effect of Rheum Rhizoma on human liver cancer HepG2 cells)

  • 윤현정;황성구;윤형중;김창현;서교수;박원한;박선동
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.27-36
    • /
    • 2006
  • Objectives : This study was performed for the investigation of anticancer effects of methanol extract of Rheum Rhizoma (MeOH-RR) on a human liver cancer cell line (HepG2). Methods : To study the cytotoxic effect of MeOH-RR on HepG2 cells, the cell viability was determined by XTT reduction method and trypan blue exclusion assay. The cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, MeOH-RR-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome c from mitochondria to cytosol, the level of Bcl-2 and Bax were examined by western blot analysis. Results : MeOH-RR reduced proliferation of HepG2 cells in a dose-dependent manner at 24 h and 48 h treatment. MeOH-RR induced the activation of caspase-3, -8, and -9 and the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3. Furthermore, treatment with MeOH-RR resulted in internucleosomal DNA fragmentation, evidenced by the formation of a DNA ladder on agarose gel, a hallmark of cells undergoing apoptosis. MeOH-RR downregulated Bcl-2, upregulated Bax, and increased the release of cytochrome c from the mitochondria into cytosol in a dose-dependent manner. Moreover, MeOH-RP increased caspase-3 activity. Conclusion : There results suggest that MeOH-RR induce apoptosis via mitochondrial pathway and caspase-3-dependent pathway in HepG2 cells. There results suggest that MeOH-RR is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF