• Title/Summary/Keyword: DNA viruses

Search Result 191, Processing Time 0.024 seconds

Porcine lymphotropic herpesvirus (Gammaherpesvirinae) DNA in free-living wild boars (Sus scrofa Linnaeus, 1758) in Brazil

  • Porto, Gisele S.;Leme, Raquel A.;Agnol, Alais M. Dall;de Souza, Tatiana C.G.D.;Alfieri, Amauri A.;Alfieri, Alice F.
    • Journal of Veterinary Science
    • /
    • v.22 no.6
    • /
    • pp.81.1-81.9
    • /
    • 2021
  • Background: Suid gammaherpesvirus 3, 4, and 5 (porcine lymphotropic herpesvirus - PLHV-1, -2, and -3) are viruses that infect domestic and feral pigs. Objectives: This study examined the presence of PLHV DNA in biological samples from free-living wild boars circulating in a Brazilian geographical region with a high density of commercial domestic pigs. Methods: Lung samples of 50 free-living wild boars were collected by exotic wildlife controller agents between 2017 and 2019 in the state of Paraná, southern Brazil. Lung and spleen fragments were obtained from six fetuses collected by hysterectomy post mortem from a pregnant sow. A polymerase chain reaction (PCR) assay using consensus primers (pan-herpesviruses) was performed to detect PLHV DNA. The samples showing positive results for PLHV DNA were submitted to single-round PCR assays with the specific primers for identifying PLHV-1 (213-S/215-As), PLHV-2 (208-S/212-As), and PLHV-3 (886s/886As). The specificity of the species-specific PCR products was assessed by nucleotide sequencing of the amplicons. Results: Forty-eight (96%) of the 50 lung samples analyzed were positive for PLHV by PCR using pan-herpesvirus primers. In 33 (68.75%) of the positive samples, at least two PLHV species were identified simultaneously. The DNA of PLHV-1, -2, and -3 was found in free-living wild boars of all ages, but not in the fetuses, even though they were from a sow that tested positive for all three viruses. Conclusion: These viruses are endemic to the population of feral pigs in the Brazilian region evaluated, as well as in domesticated pigs.

Development of DNA Chip System for Differential Diagnosis of Porcine Enteric Pathogens

  • Kim, Tae-ju;Cho, Ho-seong;Kim, Yong-hwan;A.W.M. Effendy;Park, Nam-yong
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.32-32
    • /
    • 2003
  • Intestinal infections are common in growing pigs and can be caused by multiple pathogens, environmental and management factors [1]. Among the most important viruses in swine enteritis are porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine enteric calicivirus (PECV), porcine group A rotavirus (PRV gp A) and bacteria are Escherichia coli and Salmonella spp. and protozoa is Isospora suis [1]. The DNA chip system can serve as a powerful tool that can be utilized for simultaneous detection of specific pathogenic bacteria strains and viruses [2,3]. The combination of PCR and DNA chip technology will provide a novel method for the detection of porcine enteric pathogens thus revolutionize the diagnosis and management of the disease. The aim of this study is to develop DNA chip system for the rapid and reliable detection of five major porcine enteric pathogens based on oligonucleotide DNA chip hybridization. (omitted)

  • PDF

Development of oligonucleotide microarray system for differential diagnosis of enteric viruses in diarrheic fecal samples in pigs

  • Park, Nam-Yong;Kim, Yong-Hwan;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.30 no.4
    • /
    • pp.489-496
    • /
    • 2007
  • An oligonucleotide microarray system was developed for the simultaneous detection of porcine epidemic diarrhea virus, transmissible gastroenteritis virus, porcine enteric calicivirus, porcine group A and C rotavirus. RNAs of the reference viruses and porcine diarrhea samples were extracted and amplified using one-step multiplex RT-PCR in the presence of cyanine 5-dCTP and hybridized on the microarray chip that spotted the virus-specific oligonucleotides. This system were approximately 10-to 100-fold higher in sensitivity than conventional RT-PCR, and the assay time was less than 3 hours. The relative sensitivity and specificity were 92% and 72.2%, respectively, based on 102 porcine diarrhea samples using RT-PCR as gold standard. These results suggested that the oligonucleotide microarray system in this study be probably more reliable and reproducible means for detecting porcine enteric viruses and that it could be of substantial use in routine diagnostic laboratories.

Simultaneous Detection of Cytomegalovirus, Epstein-Barr Virus, Hepatitis B Virus, and Parvovirus by a Multiplex PCR (다중 중합효소 연쇄반응을 이용한 DNA 바이러스의 동시검출)

  • Sung, Hye-Ran;Joo, Jin-Young;Lee, Chong-Kil;Chung, Yeon-Bok;Song, Suk-Gil
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • We describe a multiplex PCR method that can detect and differentiate simultaneously four different kinds of DNA viruses, Epstein-Barr virus (EBV), cytomegalovirus (CMV), hepatitis B virus (HBV) and parvovirus B19 (B19). Primers for the multiplex PCR reaction were designed to amplify specific regions of the EBV (pol), CMV (pol), HBV (pol) and B19 (ns) viral genomes and used to simultaneously detect individual viruses. In order to achieve optimal sensitivity and specificity for multiplex PCR, the thermo-cycling parameters, primer sequences, and concentration of each reaction components were optimized systematically. The sensitivity of the detection method ranged between 5 and 10 copies of viral genome with a mixture of multiple primer pairs. Furthermore, this highly sensitive test showed no cross-reactivity among the four viruses. Thus, the results obtained in this study provide evidence that the assay system is a good tool for supporting the diagnosis of viral infection and contamination.

Common viral infections in kidney transplant recipients

  • Vanichanan, Jakapat;Udomkarnjananun, Suwasin;Avihingsanon, Yingyos;Jutivorakool, Kamonwan
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • Infectious complications have been considered as a major cause of morbidity and mortality after kidney transplantation, especially in the Asian population. Therefore, prevention, early detection, and prompt treatment of such infections are crucial in kidney transplant recipients. Among all infectious complications, viruses are considered to be the most common agents because of their abundance, infectivity, and latency ability. Herpes simplex virus, varicella zoster virus, Epstein-Barr virus, cytomegalovirus, hepatitis B virus, BK polyomavirus, and adenovirus are well-known etiologic agents of viral infections in kidney transplant patients worldwide because of their wide range of distribution. As DNA viruses, they are able to reactivate after affected patients receive immunosuppressive agents. These DNA viruses can cause systemic diseases or allograft dysfunction, especially in the first six months after transplantation. Pretransplant evaluation and immunization as well as appropriate prophylaxis and preemptive approaches after transplant have been established in the guidelines and are used effectively to reduce the incidence of these viral infections. This review will describe the etiology, diagnosis, prevention, and treatment of viral infections that commonly affect kidney transplant recipients.

Comparative Viral Metagenomics of Environmental Samples from Korea

  • Kim, Min-Soo;Whon, Tae Woong;Bae, Jin-Woo
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2013
  • The introduction of metagenomics into the field of virology has facilitated the exploration of viral communities in various natural habitats. Understanding the viral ecology of a variety of sample types throughout the biosphere is important per se, but it also has potential applications in clinical and diagnostic virology. However, the procedures used by viral metagenomics may produce technical errors, such as amplification bias, while public viral databases are very limited, which may hamper the determination of the viral diversity in samples. This review considers the current state of viral metagenomics, based on examples from Korean viral metagenomic studies-i.e., rice paddy soil, fermented foods, human gut, seawater, and the near-surface atmosphere. Viral metagenomics has become widespread due to various methodological developments, and much attention has been focused on studies that consider the intrinsic role of viruses that interact with their hosts.

The 52 kD Protein Gene of Odontoglossum Ringspot Virus Containing RNA-Dependent RNA Polymerase Motifs and Comparisons with Other Tobamoviruses

  • Park, Won-Mok
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.129-136
    • /
    • 1995
  • Complementary DNA of the genomic RNA of odontoglossum ringspot virus Cymbidium strain (ORSV-Cy) was synthesized from polyadenylated viral RNA and cloned. Selected clones containing the viral RNA-dependent RNA polymerase gene of the virus has been sequenced by automated sequencing system. The complete nucleotide sequence of an open reading frame is 1377 base pairs in length, and encodes a protein of 458 amino acids about 52, 334 D. The 52 kD protein of ORSV shares four sequence motifs characteristic of viral RNA-dependent RNA polymerase. Comparison of the ORSV 52 kD protein sequence with that of other five viruses in tobamovirus group showed 76.0 to 60.7% homologies at the amino acid level and the conservation of the four motifs betwen the viruses.

  • PDF

Protective immunogenicity of the G protein of hirame rhabdovirus (HIRRV) in flounder using DNA vaccine

  • Seo, Ji-Yeon;Kim, Ki-Hong;Kim, Sung-Koo;Kim, Young-Tae;Park, Tae-Jin
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.313-314
    • /
    • 2003
  • Antiviral DNA vaccine carrying a gene for a major antigenic viral protein have received considerable attention as a new approach in vaccine development. For fish viruses effects of DNA vaccine encoding viral G gene of infectious hematopoietic necrosis virus(IHNV) and viral hemorrhagic septicemia virus (VHSV)have been demonst.ated previously(Lapatra et al., 2001) Hirame rhabdovirus (HIRRV) causes hemorragic disease on flounder. (omitted)

  • PDF

Molecular Biological Studies on Korean Garlic Viruses

  • Choi, Jin-Nam;Song, Jong-Tae;Shin, Chan-Seok;La, Yong-Joon;Lee, Jong-Seob;Choi, Yang-Do
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.86-102
    • /
    • 1994
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolate cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and that of six clones containing poly (A) tail were compared with those of other plant viruses. One of those clones, V9 has 81.8% similarity in nucleotide sequence and 93.0% in deduced amino acid sequence, respectively, to the coat protein gene for garlic mosaic virus (GMV). Northern blot analysis with the clone V9 demonstrated that the genome of GMV is 7.8 kb long and has poly (A) tail. The anti-coat protein antibody for GMV recognizes 35 kDa polypeptide which could be the coat protein of GMV from infected garlic leaf extract or virus preparation. Clone G7 has about 62% of deduced amino acid sequence identity with the members of potyvirus group. Northern blot analysis with the clone G7 demonstrated that the genome of the potyvirus I garlic is 9.0 kb long and has poly (A) tail. The third clone, S81, shows 42% amino acid identity to the potexvirus. The other clones are under the characterization. To test the possibility of producing garlic virus resistant plant, we have designed a hairpin type ribozyme to cleave V9 RNA at the middle of the coat protein gene. From the cleavage reactions in vitro with two different sizes of RNA substrates, V9SUB (144 nucleotides) and V9 RNA (1,361 nucleotides), the ribozyme can cleave V9 sequence effectively at the predicted site. To study the activity of the ribozyme in vivo, plant transformation is in progress. Further possibilities to produce garlic virus resistant plant will be discussed.

  • PDF