• Title/Summary/Keyword: DNA screening

Search Result 708, Processing Time 0.023 seconds

Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won;Choi, Youn-Chul;Lee, Jung-Min;Seo, Jung-Min;Kim, Jeong-Hwan;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1052-1056
    • /
    • 2004
  • A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Isolation and Biological Properties of Novel Cell Cycle Inhibitor, HY558, Isolated from Penicillium minioluteum F558

  • Lee, Chul-Hoon;Lim, Hae-Young;Kim, Min-Kyoung;Cho, Youl-Hee;Oh, Deok-Kun;Kim, Chang-Jin;Lim, Yoon-Gho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.470-475
    • /
    • 2002
  • In the course of screening for a novel cell cycle inhibitor, a potent Cdk 1 inhibitor, HY558, was found from the culture broth of Penicillium minioluteum F558 isolated from a soil sample. The molecular ion of HY558 was identified at m/z 329 (MH+) with a molecular formula of $C_20H_44ON_2$. HY558 exhibited selective antiproliferative effects on various human cancer cell lines. Its $IC_50$ values were estimated to be 0.29 mM on HepG2, 0.30 mM on HeLa, 0.30 mM on HL6O, 0.33 mM on HT-29, and 0.25 mM on AGS cells. Interestingly, Hy558 demonstrated no antiproliferative effect with normal lymphocytes used as the control, and a low level of inhibition on the proliferation of A549 cancer cells. A flow cytometric analysis of HepG2 cells revealed an appreciable arrest of cells at the G1 and G2/M phases of the cell cycle following treatment with Hy558. furthermore, DNA fragmentation due to apoptosis was observed in HeLa cells treated with 0.46 mM of HY558.

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

Association of CYP2E1, STK15 and XRCC1 Polymorphisms with Risk of Breast Cancer in Malaysian Women

  • Chong, Eric Tzyy Jiann;Goh, Lucky Poh Wah;See, Edwin Un Hean;Chuah, Jitt Aun;Chua, Kek Heng;Lee, Ping-Chin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.647-653
    • /
    • 2016
  • Background: Breast cancer is the most common type of cancer affecting Malaysian women. Recent statistics revealed that the cumulative probability of breast cancer and related deaths in Malaysia is higher than in most of the countries of Southeast Asia. Single nucleotide polymorphisms (SNPs) in CYP2E1 (rs6413432 and rs3813867), STK15 (rs2273535 and rs1047972) and XRCC1 (rs1799782 and rs25487) have been associated with breast cancer risk in a meta-analysis but any link in Southeast Asia, including Malaysia, remained to be determined. Hence, we investigated the relationship between these SNPs and breast cancer risk among Malaysian women in the present case-control study. Materials and Methods: Genomic DNA was isolated from peripheral blood of 71 breast cancer patients and 260 healthy controls and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Our study showed that the c1/c2 genotype or subjects with at least one c2 allele in CYP2E1 rs3813867 SNP had significantly increased almost 1.8-fold higher breast cancer risk in Malaysian women overall. In addition, the variant Phe allele in STK15 rs2273535 SNP appeared to protect against breast cancer in Malaysian Chinese. No significance association was found between XRCC1 SNPs and breast cancer risk in the population. Conclusions: This study provides additional knowledge on CYP2E1, STK15 and XRCC1 SNP impact of risk of breast cancer, particularly in the Malaysian population. From our findings, we also recommend Malaysian women to perform breast cancer screening before 50 years of age.

Alu Methylation in Serum from Patients with Nasopharyngeal Carcinoma

  • Tiwawech, Danai;Srisuttee, Ratakorn;Rattanatanyong, Prakasit;Puttipanyalears, Charoenchai;Kitkumthorn, Nakarin;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9797-9800
    • /
    • 2014
  • Background: Nasopharyngeal carcinoma (NPC) is a common cancer in Southern China and Southeast Asia. Alu elements are among the most prevalent repetitive sequences and constitute 11% of the human genome. Although Alu methylation has been evaluated in many types of cancer, few studies have examined the levels of this modification in serum from NPC patients. Objective: To compare the Alu methylation levels and patterns between serum from NPC patients and normal controls. Materials and Methods: Sera from 50 NPC patients and 140 controls were examined. Quantitative combined bisulfite restriction analysis-Alu (qCOBRA-Alu) was applied to measure Alu methylation levels and characterize Alu methylation patterns. Amplified products were classified into four patterns according to the methylation status of 2 CpG sites: hypermethylated (methylation at both loci), partially methylated (methylation of either of the two loci), and hypomethylated (unmethylated at both loci). Results: A comparison of normal control sera with NPC sera revealed that the latter presented a significantly lower methylation level (p=0.0002) and a significantly higher percentage of hypomethylated loci (p=0.0002). The sensitivity of the higher percentage of Alu hypomethyted loci for distinguishing NPC patients from normal controls was 96%. Conclusions: Alu elements in the circulating DNA of NPC patients are hypomethylated. Moreover, Alu hypomethylated loci may represent a potential biomarker for NPC screening.

Identification of Plasmid-Free Chlamydia muridarum Organisms Using a Pgp3 Detection-Based Immunofluorescence Assay

  • Chen, Chaoqun;Zhong, Guangming;Ren, Lin;Lu, Chunxue;Li, Zhongyu;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1621-1628
    • /
    • 2015
  • Chlamydia possesses a conserved 7.5 kb plasmid that is known to play an important role in chlamydial pathogenesis, since some chlamydial organisms lacking the plasmid are attenuated. The chlamydial transformation system developed recently required the use of plasmid-free organisms. Thus, the generation and identification of plasmid-free organisms represent a key step in understanding chlamydial pathogenic mechanisms. A tricolor immunofluorescence assay for simultaneously detecting the plasmid-encoded Pgp3 and whole organisms plus DNA staining was used to screen C. muridarum organisms selected with novobiocin. PCR was used to detect the plasmid genes. Next-generation sequencing was then used to sequence the genomes of plasmid-free C. muridarum candidates and the parental C. muridarum Nigg strain. We generated five independent clones of plasmid-free C. muridarum organisms by using a combination of novobiocin treatment and screening plaque-purified clones with anti-Pgp3 antibody. The clones were confirmed to lack plasmid genes by PCR analysis. No GlgA protein or glycogen accumulation was detected in cells infected with the plasmid-free clones. More importantly, whole-genome sequencing characterization of the plasmid-free C. muridarum organism and the parental C. muridarum Nigg strain revealed no additional mutations other than loss of the plasmid in the plasmid-free C. muridarum organism. Thus, the Pgp3-based immunofluorescence assay has allowed us to identify authentic plasmid-free organisms that are useful for further investigating chlamydial pathogenic mechanisms.

Screening, Gene Cloning, and Characterizations of an Acid-Stable α-Amylase

  • Liu, Xinyu;Jia, Wei;An, Yi;Cheng, Kun;Wang, Mingdao;Yang, Sen;Chen, Hongge
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.828-836
    • /
    • 2015
  • Based on its α-amylase activity at pH 5.0 and optimal pH of the crude enzyme, a strain (named B-5) with acid α-amylase production was screened. The B-5 strain was identified as Bacillus amyloliquefaciens through morphological, physiological, and biochemical characteristics analysis, as well as 16S rDNA phylogenetic analysis. Its α-amylase gene of GenBank Accession No. GU318401 was cloned and expressed in Escherichia coli. The purified recombinant α-amylase AMY-Ba showed the optimal pH of 5.0, and was stable at a pH range of 4.0-6.0. When hydrolyzing soluble starch, amylose, and amylopectin, AMY-Ba released glucose and maltose as major end products. The α-amylase AMY-Ba in this work was different from the well-investigated J01542-type α-amylase which also came from B. amyloliquefaciens. AMY-Ba exhibited notable adsorption and hydrolysis ability towards various raw starches. Structure analysis of AMY-Ba suggested the presence of a new starch-binding domain at its C-terminal region.

Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea

  • Kim, Won-Il;Cho, Won-Kyong;Kim, Su-Nam;Chu, Hyo-Sub;Ryu, Kyoung-Yul;Yun, Jong-Chul;Park, Chang-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.777-790
    • /
    • 2011
  • To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: ${\alpha}$-proteobacteria, ${\beta}$- proteobacteria, and ${\gamma}$-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.

Green Synthesis of Silver Nanoparticles Using Cell Extracts of Anabaena doliolum and Screening of Its Antibacterial and Antitumor Activity

  • Singh, Garvita;Babele, Piyoosh K.;Shahi, Shailesh K.;Sinha, Rajeshwar P.;Tyagi, Madhu B.;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1354-1367
    • /
    • 2014
  • In the present work, we describe a simple, cheap, and unexplored method for "green" synthesis of silver nanoparticles using cell extracts of the cyanobacterium Anabaena doliolum. An attempt was also made to test the antimicrobial and antitumor activities of the synthesized nanoparticles. Analytical techniques, namely UV-vis spectroscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and TEM-selected area electron diffraction, were used to elucidate the formation and characterization of silver-cyanobacterial nanoparticles (Ag-CNPs). Results showed that the original color of the cell extract changed from reddish blue to dark brown after addition of silver nitrate solution (1 mM) within 1 h, suggesting the synthesis of Ag-CNPs. That the formation Ag-CNPs indeed occurred was also evident from the spectroscopic analysis of the reaction mixture, wherein a prominent peak at 420 nm was noted. TEM images revealed well-dispersed, spherical Ag-CNPs with a particle size in the range of 10-50 nm. The X-ray diffraction spectrum suggested a crystalline nature of the Ag-CNPs. FTIR analysis indicated the utilization of a hydroxyl (-OH) group in the formation of Ag-CNPs. Ag-CNPs exhibited strong antibacterial activity against three multidrug-resistant bacteria. Additionally, Ag-CNPs strongly affected the survival of Dalton's lymphoma and human carcinoma colo205 cells at a very low concentration. The Ag-CNPs-induced loss of survival of both cell types may be due to the induction of reactive oxygen species generation and DNA fragmentation, resulting in apoptosis. Properties exhibited by the Ag-CNP suggest that it may be used as a potential antibacterial and antitumor agent.